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ABSTRACT 

 
 The BER (Bit Error Rate) of the frequency 
selective channels is analyzed using OFDM (Ortogonal 
Frequency Division Multiplexing)  technique, and 
MDPSK modulation. The equalization technique is 
based on cyclic prefix added to the information block. 
We considered channels with a gaussian noise and 
Rayleigh or Rice fading conditions. 
   
 

I. INTRODUCTION 
 
 Mobile radio communication systems offer a 
variety of services and qualities  for mobile users. Then, 
the modern mobile radio transceivers must be able to 
provide high capacity and variable bit rate (VBR) 
information transmission with high bandwidth efficiency. 
In the radio channel, signals are usually affected by fading 
and multipath delay spread phenomenon. Severe fading of 
the signal amplitude and intersymbol interference (ISI) due 
to the frequency selectivity of the channel cause an 
unacceptable degradation of the system performance. 
The techniques used in the single carrier mobile 
communication systems -channel coding and adaptive 
equalization- to combat fading and multipath propagation  
are practical difficult to use at high bit rate, due to the 
delay in coding and equalization process and high cost of 
hardware. 
The multicarrier modulation technique, commonly referred 
as OFDM is a main modulation scheme for digital audio 
and video broadcasting to avoid ISI introduced by 
frequency selective (FS) multipath fading. High-rate data 
are sent in parallel on a number of narrowband ISI free 
subchannels, each subchannel operating at a low data rate, 
to avoid the channel frequency selectivity. 

 
Adding a cyclic prefix for each block of data, the ISI can 
almost completely be avoided. Each carrier of OFDM 
signals is modulated with M-ary differential phase shift 
keying (MDPSK). 
In this paper we theoretically study the BER performance 
of OFDM-MDPSK in a frequency selective Rician fading 
channel, rarely reported in the literature. 
Techniques for channel equalization based on redundant  
filter bank precoder have been introduced and well-
situated in recent years     [SGB `99, XIA `97].     The 
cyclic prefix system with DFT (Discrete Fourier 
Transform) matrices, which is commonly employed in 
discrete multitone (DMT) systems for twisted pair 
channels in telephone cables [BIN `90] can actually be 
used for blind equalization of a much broader class of 
channels. One advantage of the method is that besides 
FFT, there is very little computation involved, and 
therefore the method is very efficient. 
If a channel has zero in |z |≥1 domain then there are some 
problems with traditional equalization: the channel noise 
can get severely be amplified. The cyclic prefix method 
does not require the channel to be minimum-phase. 
Equalization does not severely amplify noise as long as the 
zeros of the channel are not too close to the unit circle. The 
advantages are obtained at the expense of a slightly higher 
bandwidth expansion ratio compared to [GSB`97], but the 
expansion becomes negligible as the block length 
increases. 
 
 

II. CYCLIC PREFIX 
 

We assume that the channel is an L-th order FIR 
system: 
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with additive noise (fig. 1). 
 
 
 
 
 
 
 
 
The symbol stream is divided into block of length M, and 
after that, L zeros are introduced at the beginning of each 
block like a guard interval. The all M+L sequence occupies 
the same time like original block for a given symbol rate 
zero-prefix reduce the spacing between samples (fig. 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The bandwidth expansion factor γ = (M+L)/M represents 
the excess bandwidth. By making M large enough, it can 
reduce γ. From the measurement of output block - that 
depends on the input and the noise - it can recover the 
corresponding input block (fig. 2). Ignoring noise for the 
moment, we have for k-th block: 
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where J=k(L+M)+L,  M>0, and 
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This is a lower triangular Toeplitz matrix representing 
causal convolution. Assume c(0) ≠ 0 (it can extract delays 

from C(z) if it is necessary). Then C∆ is nonsingular and its 
inverse C∆

-1 is also a lower triangular Toeplitz matrix, like 
C∆, having the terms h(n) the first M coefficients of the 
inverse: 
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In practice the channel adds the noise so y(n) → y(n) + 
e(n) in the former relations and so x(n) is not recovered 
exactly. This noise could be severely amplified by the 
inversion process if C(z) has some zeros outside the unit 
circle. 
For the case of blind identification the channel order L is 
known but C(z) itself is unknown. It is still possible to 
recover the input stream from the output under some 
conditions. Instead of L zeros it inserts 2L+1 redundant 
samples (fig.3); it has 2L zeros and an impulse at the 
middle. It is called “the impulse redundancy” [VV-2].  If 
this new symbol stream is convolved with the L-th order 
channel, the impulse response c(n) appears at the output 
starting from the location of the redundant impulse in each 
block. Thus it can recover the channel exactly and then 
invert it to recover the input x(n). The method needs 2L+1 
rather L redundant symbols but is computationally and 
conceptually very simple. The bandwidth expansion factor 
(2L+1+M)/M tends to unity for large M. 
 
 
 
 
 
 
 
 
The channel noise that affects the redundant impulse can 
be reduced by averaging the estimation of c(n) over many 
blocks; this implies a corresponding large latency. The 
inverse matrix C∆

-1 could still amplify noise if the channel 
is not minimum-phase. 
Instead of using a zero-prefix or impulse prefix it can also 
use a cyclic prefix and perform blind equalization; this 
method performs even if the channel is not a minimum 
phase. It is sufficient, but not necessary that the channel be 
free from unit circles zeros [VV-2]. The L symbols at the 
end of each block are copied into the beginning of that 
block, to form the cyclic prefix (fig. 4).  
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This assume L≤M; if L>M, the matrix becomes circulant 
and eq. (2) becomes (4). The last input symbols x(n) in the 
m-th block are related to the last M output symbol y(m) in 
the m-th block. 

                            y(m)= Cs(m)                                   (4 ) 
 
where: 
 
          s(m)=[s(mM), s(mM+1)…s(mM+M-1)] 
          y(m)=[y(m(L+M)),y(m(L+M)+1)… 
                     ……y(m(L+M)+L-1)],  
 
C is a circulant matrix with the element of top row coming 
from the channel impulse response c(n); for example when 
the channel order is L=3 and M=6. 
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If the channel is known, it can perform the equalization by 
inverting (4), assuming C is nonsingular [VV-1]. The 
eigenvalues of the M x M  circulant are equal to the DFT 
coefficients of the top row [PAP `77] in reversed order. 
These eigenvalues are: 
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where W=ej2πk/M and C(ejω) represents the channel 
frequency response. Thus η(k) are obtained by sampling  
uniformly C(ejω) at M frequency. For L<n<M c(n)=0. The 
circulant matrix can be diagonalized with DFT matrix: 
 

C = W-1ΛCW 
where 

ΛC = diag{CM[0]…C[M-1]} 
 

and  CM[k]= ∑
=

L

0n

nkW)n(C =M – point DFT of c(n) 

is a permuted version of the eigenvalues η(k). The 
implementation of the communication system can be 
represented as shown in fig. 5. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The diagonal elements of Λc

-1 are 1/ CM(k) and can be 
regarded as a set of DFT-domain equalizers. All the 
complexity is done at the receiver, but in fig. 6 the DFT is 
done at the transmitter as in DMT system. If the channel is 
known it can move also Λc

-1 and W to the transmitter part, 
yielding a useful configuration for cases where the receiver 
has to be the simplest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
If the channel is non-minimum phase having no zeros on 
the unit circle, C is non-singular and it can invert (4) to 
obtain the input symbol stream. In the cyclic prefix 
method, the DFT coefficients are bounded |CM[k]|≥1 so 
that the diagonal elements 1/ CM[k] of the equalizer Λc

-1 do 
not amplify noise. 
When the channel is unknown, the fig. 6 is modified into 
fig. 7. The r(n) vector is a known vector of L+1 nonzero 
samples, N=M+L+1, and s(n) is a vector of M samples in 
nth block. Then 
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In fig. 7 the subscript N indicates the size of the matrices 
and distinguishes them from fig. 6.  
 
 
 
 
 
 
 
 
 
The CN is a N x N circulant, WN is N x N DFT matrix, and 
diagonal elements of ΛcN

-1 are 1/CN[k] where: 
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Since the channel is unknown we cannot insert the matrix 

ΛcN
-1 yet, but it can measure the signal v(n), which has the  

top L+1 component scaled by CN[0], CN[1], …, CN[L]. 
Since M(n) has known nonzero samples, it can therefore 
identify CN[0], CN[1], …, CN[L], related to the channel 
c[0], c[1], …, c[L] by the top/left  (L+1)x(L+1) submatrix 
Wsub of the N x N DFT matrix. The channel can so be 
identified. Because in practice v(n) has an additive noise 
component from the channel, it can average the estimated 
CN[k] over a large number of the output block, the 
compromise being the latency involved. Also for the 
channel that vary in time, the rate at which it can update  
the blind estimation is compromised [VV-3]. The blind 
identification is possible only at the expense of the 
additional   redundancy  of   L+1  samples, so the complete  
system has a higher bandwidth expansion factor 
(M+2L+1)/M. As in other methods this approaches unity 
as M grows. 

 
III. TRANSCEIVER SYSTEM AND FADING 
CHANNEL MODEL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The block diagram of OFDM-MDPSK system is shown in 
(8).  The serial information data are first grouped into 
blocks of M symbols. Then the symbols are parallelized by 
the S/P converter to aki and then applied to a differential 
encoder to generate the MDPSK signals. The transmitted 
signal can be expressed in complex form as: 
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where fk=fc+kTs, is the frequency of the k-th carrier and fc 
is the lowest carrier frequency. Ts=∆+ts is the block 
duration where ∆ and ts are the circular prefix and the 
observation period, respectively. cki=ck(i-1)aki is chosen out 

of the constellation set 
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output of the k-th differential  encoder in the time interval 
[iTs-∆, iTs+ts]. g(t) is a pulse waveform of each symbol 
defined as (5): 
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The transmitted signal s(t) is subjected to multipath fading 
and AWGN, so the received signal can be written as (5) 
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where n(t) is a complex gaussian noise and h(t,τ) is the 
impulse response of the multipath fading channel at time t-
τ. The frequency selective Rician fading channel here is 
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Fig. 7. The cyclic prefix system 
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Fig. 8: Block diagram of the OFDM-MDPSK system 



modeled as a 3-ray tapped delay line with one line of sight  
(LOS) path and two multipath components. 
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where Ps is the power of LOS signals, P1 and P2 are the 
powers of the multipath signals. τ1 and τ2 are the delay of 
the first and second multipath respectively, and 0<τ1 
<∆<τ2. h1(t) and h2(t) are independent slowly varying 
complex Gaussian random process with maximum 
Doppler shift fm and are normalized as: 
 

2])([])([ 2
2

2
1 == thEthE                     (8) 

)2(2

])()([])()([

0

*
22

*
11

sm

ss

TfJ

TththETththE

π=

=+=+
       (9) 

The multitone duration, Ts, is much longer than the serial 
symbol duration, T, so that the Doppler shift should not be 
ignored in (9).  
A parameter characterizing the nature of the Rician fading 
channel is the Rice factor defined as the ratio of LOS 
component power Ps and the multipath components power 
Pd= P1+ P2, i.e. K=Ps/Pd. As special case the channel is 
AWGN channel (no multipath components) when K→∞, 
and a Rayleigh fading channel (no LOS component) when 
K=0. The received signal-to-noise ratio is defined as the 
average received bit energy divided by N0 which is one 
sided power spectral density of AWGN in Watts/Hz, 
which is expressed as  
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where Bs=1/Ts and Pn=BsN0 is the power of the filtered 
AWGN. 
At the receiver, after doing  FFT to the received signal, the 
output of the m-th subchannel at time iTs can be obtained 
as (5) 
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for the l-th branch (l=1,2,3,…,L). 
Finally, the differential detector of each subchannel uses 

the variable ∑ ∑
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−=
L

l

L

l
imlmilmil rrz

1 1

*
)1(,,, to decide which 

symbol was transmitted and then the parallel data are 
converted back to serial data stream . 

IV. MEASUREMENTS AND CONCLUSIONS 
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equal with the duration of one serial symbol 

10 12 14 16 18 20 22 24 26 28 30
10

-3

10
-2

10
-1

Average BER

SNR per bit

B
E

R

: M=16
: M=32
: M=64

Fig. 11a: Average bit error rate for a two ray channel with one 
symbol period delay for different values of the frame lengths, M

0 0.5 1 1.5 2 2.5
10

-6

10
-5

10 -4

10
-3

10 -2

10
-1 BER 

Tm/Tprefix 

 

: M=16
:M=32
: M=64
 M=128

Fig.9: Bit error rate as a function of  the maximum  multipath delay, 
normalized with the  cyclic prefix length, for a cyclic prefix duration 

equal with the duration of 4  serial symbols 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In these simulations, it can be observed that the BER is 
improved by the length of the block M, fig. 9, 10, 11(a, b), 
12(a,b) [LON’02]. The performance can significantly be 
improved when the number of subchannel is large because 
the rate of each subchannel decreases, so the results are 
according with the Shannon’s theorem for the noisy 
channels. The BER performance is also improved by the 
length of the cyclic prefix (fig. 9,10) but the increase of the 
cyclic prefix length is payed by the increase of the 
bandwidth. 
Fig. 11a shows the simulation results for a two-ray channel 
when the delay between the two rays is one symbol period. 
To mentain the same BER when the delay between the two 
rays is four symbol periods, a four times longer frame 
length is required(fig. 11b). 
In fig. 12 a, b is plotted the BER performance with respect 
to average SNR per bit for a Rice channel. It can be seen 
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Fig. 12a: BER performances of a 3-ray Rician fading 
channel, MDPSK, Ps/(P1+P2)=10 dB, P1/P2=0dB, 

ρ=δ2/T=1.2 (M=16, 32)  
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that the performance is improved by increasing the block 
length. 
Analyzing the fig. 13 we can see that the performance 
increases by the increase of the P1/P2 ratio because of 
decrease of  ISI and ICI (Inter Channel Interference) power 
introduced by the second multipath component. 
In fig. 14, it is shown that maximum Doppler shift has 
significant influence on the BER when the delay of the 
second multipath component is small. When the delay is 
large, the main interference comes from ISI and the effect 
of the Doppler shift decades. 
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