
An introduction to JPEG2000-like compression

using MATLAB

Arno Swart

October 30, 2003

1 Introduction

The JPEG-2000 format is the official successor to the popular JPEG image
compression format. The JPEG-2000 standard is more complex and has more
functionality than JPEG. Some features of JPEG-2000 are

• State of the art in lossless and lossy compression using wavelets.

• Random access to the bit stream and ‘region of interest’ coding.

• Processing of compressed data (rotating, cropping, etc.)

• Inclusion of meta-data (dpi for printing, copyright information, etc.)

As yet a total of 12 parts have been submitted for standardisation, we will only
focus on part 1: the core coder. Of this part we will only discuss a subset since
we are primarily interested in the compression performance (and the gain in)
using wavelets.

This document comes with a MATLAB implementation of the subset of
JPEG-2000 that is discussed here. Throughout the text there are several ex-
periments you can try for yourself.

2 Tiling, YUV transform and the DWT

The first step is the same as in ordinary JPEG: if the image consists of three
color components a transform to the YUV color space can be made. Actually,
JPEG-2000 defines a more general Reversible Component Transform for use in
lossless compression. A component does not need to be a color channel, it can
also be an opacity channel or separate foreground and backgrounds. But we
will not discuss these more general aspects. Next, the Y, U and V components
are subdivided in rectangular tiles, all of the same size except maybe at the
boundary. The same subdivision for each component. These tiles are not needed
for good performance of the wavelet transform (wavelets enjoy a nice localisation
property), they are included to allow for fast access to different regions of the
image. One could also use just one tile.

1



LL0

LH0

HL0

HH1

HL2

LH2

HH0

LH1

HL1

HH2

Figure 1: The distribution of the sub-bands over the matrix of wavelet coeffi-
cients. In this example a three level DWT is used.

Question 1 Try this for yourself, use different tile sizes and see how it affects
the compression ratio.

Next an L-level dyadic discrete wavelet transform is applied to each tile. For
lossy compression the standard proposes the bi-orthogonal (9, 7) wavelet. Wavelets
come in different scales, the lowest level with least detail is at level zero, while
the highest level is L. A scale is commonly referred to as a sub-band. A sub-
band is assigned the name LL,LH,HL, HH with a subscript indicating the
level. The H and L stand for high-pass and low-pass in the horizontal and ver-
tical direction. See picture (1) for the location of the sub-bands in the coefficient
matrix, for a particular component.

Question 2 Do you understand why the pictures in the sub-bands look like
scaled versions of the original picture? What do the different intensities mean
in the LH, HL and HH bands?

Question 3 Do discrete wavelet transforms on the example pictures. Use dif-
ferent levels, try do do backward wavelet transforms with less levels. What do
you notice?

3 Boundary effects

The figure (1) is very suggestive. One might think that we can fit all wavelet
coefficients in one picture of the width and height of the original untransformed

2



Figure 2: The signal (top), with periodic extension (left) and symmetric exten-
sion (right)

picture. This is not true because of boundary effects. To make the exposition
simpler we will look at a 1D signal. If the filter length is M and the signal
length is N then the number of coefficients after one transform is N + M − 1.
More wavelet levels makes the situation worse. We could use periodic extension,
which means we extend the signal with it’s own copy at the boundary. In view
of figure(2) we see that we can get discontinuities, and these are not very well
compressible.

A better alternative is to use symmetric extension, as in figure(2). This does
not give discontinuities. A new problem arises: adding a symmetric copy to a
signal doubles the length. This doesn’t really matter for the signal itself (we
only store half of it) but it also doubles the number of wavelet coefficients: in
general, the wavelet coefficients do not form a symmetric signal. Symmetry is
only guaranteed if the analysing wavelet is symmetric or antisymmetric. The
only orthogonal candidate (which is real valued and compactly supported) is
the Haar wavelet. Giving up orhogonality offers more possibilities.

In JPEG-2000 the wavelet of choice has become the Daubechies (9/7) bi-
orthogonal wavelet. This wavelet is symmetric and almost orthogonal. Of course
there are more wavelets that could have been used, yet this wavelet gave best
results in compression tests.

Question 4 Try some other symmetric wavelets. Do you notice anything spe-
cial at the boundary? Verify that for the Haar wavelet the number of coefficients
is indeed exactly the number of pixels.

3



4 Quantisation

Now every sub-band of every transformed tile of every component is quantised.
Quantisation is the main source of compression. The quantisation is somewhat
simpler than the JPEG quantisation tables: every sub-band is uniformly quan-
tised. One fixed quantisation step (the number by which you divide the wavelet
coefficients) is allowed per sub-band, the result is rounded down. The MATLAB
code allows you to give every sub-band and the LL0 band it’s own quantisation
step.

5 Lossless compression

The subsequent lossless compression that we will use is not JPEG-2000 standard.
The reason for this is simplicity that allows use to use the ‘lossless part’ of our
JPEG code. A brief outline of the official subdivision and compression scheme
is given in the next section. Readers who wish to explore these options in more
detail are referred to the links on the course’s internetpages.

We will simply divide each sub-band into code blocks of size 8× 8, if needed
we append zeros to create multiples of eight. Each code block will be zero run
length and Huffman coded, as in the original JPEG scheme. The use of the
zigzag scheme is not useful.

Question 5 Make some graphs of compression ratio’s against mean squared
errors. Is it better than the ‘old’ JPEG? Note that mean squared error is not
the only possible measure. The error’s made in JPEG-2000 are different than
those in JPEG. Try also making some visual comparisons between JPEG-2000
and JPEG for comparable error rates.

6 Brief description of further JPEG2000 com-
pression [optional]

The tiling of the image allows for (coarse grained) localisation in image space.
JPEG-2000 defines a further subdivision in rectangular packet partitions, this
gives a localisation in wavelet-coefficient space. Every packet partition is then
divided in rectangular code blocks. These code blocks are the basic units that
will be entropy coded with a clever context-based coder called the MQ-coder.

7 Further features of JPEG-2000

A nice feature of JPEG-2000 is the possibility to store parts of the code blocks in
layers. Each layer contains some bits of every code block. The more layers you
send, the better image quality you get. You could for example have a 50 layer
high quality file. If you want to publish it in low quality on the internet you send
only 10 layers. Another possibility is storing a foreground and a background

4



in separate layer sets, so that they may be split later. This is very useful for
scientific visualisation purposes. Finally the layers can be decoded in parallel,
should you have a huge image file (and a supercomputer).

5


