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Abstract.1 In this paper we review the recent impact of
transmultiplexers in digital communications. Filter bank
precoders, conditions for equalization, and multiuser inter-
ference cancellation are reviewed. The idea behind blind
channel identification is reviewed as well. The emphasis
is mostly on the theoretical infrastructure, and the list of
references provide a wealth of related information.

I. INTRODUCTION

Transmultiplexers have been known in digital communica-
tions for many years. Historically the transmultiplexer has
been viewed as a system that converts from time multi-
plexed components of a signal to a frequency multiplexed
version, and back [1], [2], [18]. The mathematical theory
of transmultiplexers however allows more general interpre-
tations and, therefore, applications. Some of these include
channel equalization, channel identification and so forth.
The role of transmultiplexers in digital communications has
gained new importance because of many recent results in
filter bank precoders. The works of Giannakis et al., Xia,
and Lin and Phoong have had a particular impact in this
area. The pioneering work of Giannakis et al. shows that
such precoders not only allow equalization of linear finite-
spread channels, but also blind equalization based only on
second order statistics. Furthermore, cancellation of mul-
tiuser interference in CDMA channels without knowledge
of channel coefficients has been shown to be possible.

In this paper we review the fundamental infrastructure
behind these methods. In Sec. II, the transmultiplexer
system is introduced and the mathematical framework de-
veoped. In Sec. III we present the theory behind the
cancellation of multiuser interference. To the best of our
knowledge the approach used here is new. It gives rise to
several well known systems as special cases, including the
single user DMT system [16], [8], [21], and the multiuser
Amour system [4]. Section IV describes the meaning of
bandwidth expansion and then derives the Amour system
of [4] which was introduced in the literature in a different
context, namely, the cancellation of multiuser interference.
In Sec. V we make brief remarks on handling the effects
of channel noise. In Sec. VI the fundamentals behind
blind identification of channels using transmultiplexers is
reviewed. Some of the important topics that are not cov-
ered in detail are briefly mentioned in Sec. VII. Important
references are cited for further reading, and there are excel-
lent papers in this special session covering related topics.

1Work supported in part by the ONR grant N00014-99-1-
1002, USA.

Notations. Standard multirate notations from [18] will
be freely used. For example the notation [H(z)]↓M rep-

resents the z-transform of the decimated version h(Mn).
Lower and upper case notations such as hk(n) and Hk(z)
will be consistently used to denote sequences and their z-
transforms. The “communications notations” used here
are quite standard, though some readers might benefit by
reading [20] for this.

II. THE TRANSMULTIPLEXER SYSTEM

Most of our discussions in this paper will center around
the structure shown in Fig. 1 (and its generalization in
Fig. 2) called a transmultiplexer. The signals sk(n) are
symbol streams (such as PAM or QAM signals, [11], [20]).
These could be symbols generated by different users who
wish to transmit messages over the channel. Or they could
be different independent parts of the signals generated by
one user [20]. The distinction between these two scenar-
ios is not required for our discussions here. The symbol
streams sk(n) are passed through the interpolation filters
or transmitter filters Fk(z) to produce the signals

xk(n) =
∑

i

sk(i)fk(n − iP )

The filters Fk(z) are also called pulse shaping filters be-
cause they take each sample of sk(n) and “put a pulse
fk(n) around it”. The sum x(n) of the signals xk(n) is
then transmitted over a common channel. The channel is
described by a linear time invariant filter C(z) followed by
additive noise. At the receiver end, the filters Hk(z) have
the task of separating the signals and reducing them to the
original rates by P -fold decimation.
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Fig. 1. The M -user transmultiplexer.



II.1. Preliminary remarks

Notice that since the M signals are mutiplexed into one
channel, it is necessary to have P ≥ M . When P > M
we have a redundant transmultiplexer, whereas P = M
corresponds to a minimal transmultiplexer.

The received signals ŝk(n) in general are different from
sk(n) for several reasons. First, there is multiuser interfer-
ence or MUI. This means that ŝk(n) is affected not only
by sk(n) but also by sm(n), m �= k. Second,the channel
C(z) introduces a linear distortion called intersymbol in-
terference or ISI (even when M = 1), and finally there is
additive noise. The task at the receiver is therefore to mini-
mize the effects of these distortions so that the transmitted
symbols sk(n) can be detected from ŝk(n) with acceptably
low probabilities of error. In absence of noise it is possi-
ble to compensate or equalize the effect of the channel
completely and obtain perfect symbol reconstruction, that
is ŝk(n) = sk(n). The theory of perfect-reconstruction
transmultiplexers for the case P = M was developed in
[22] and [6]. The case P > M is more useful, as it elimi-
nates some of the difficulties associated with practical filter
design. For example when P > M it is possible to equalize
an FIR channel with the help of FIR filters Hk(z), Fm(z)
alone [8,13].

A special case of the redundant transmultiplexer has
been widely used in DSL systems which use the dis-
crete multitone modulation or DMT techniques in the
transceiver [5], [8], [20]. In this system the filters are
chosen from a simple uniform DFT filter bank (this ap-
pears at the end of this section). The more general theory
of redundant transmultiplexers is fairly recent. Notewor-
thy here are the fundamental contributions from Lin and
Phoong and early contributions from Xia (see references
at the end). Pioneering developments on redundant trans-
multiplexers, also called filter bank precoders came from
the group of Giannakis, et al., who showed both equaliz-
ability and blind identifiability (these terms will become
clear as we proceed further).
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Fig. 2. Generalization of the M -user transmultiplexer.

A generalization of the transmultiplexer system is shown
in Fig. 2. Again there are M users transmitting the sym-
bol streams sm(n), but over M different channels Cm(z).
A noisy superimposition of these is received by the M re-
ceivers, which are expected to separate out the components
sm(n). If the channel transfer functions Cm(z) are iden-
tical for all m this reduces to the traditional transmulti-
plexer of Fig. 1. This generalization has become important
in the context of multiuser communications over wireless

channels. A technique for cancellation of MUI in these
systems was first developed by Giannakis, et al. [4].

II.2. Mathematical analysis

Even though Fig. 2 is more general than Fig. 1, it is
just as easy to analyze. So we will start with this figure.
An important result in the theory of multirate systems is
called the polyphase identity [18]. This states that if a lin-
ear time invariant (LTI) filter G(z) is sandwiched between
an expander and decimator as shown in Fig. 3 then the
result is equivalent to an LTI system with impulse response
d(n) = g(Pn) (decimated version). That is, the transfer
function of the overall system is D(z) = [G(z)]↓P . Return-

ing to Fig. 2 the transfer function from sm(n) to ŝk(n) is
therefore given by

Tkm(z) = [Hk(z)Cm(z)Fm(z)]↓P (1)

If we choose the filters {Fm(z)} and {Hk(z)} such that

[Hk(z)Cm(z)Fm(z)]↓P = δ(k − m), (2)

then multiuser interference is cancelled and there is perfect
recovery of symbols, i.e., the PR property.

G(z)P P D(z)

d(n)=g(Pn)

Fig. 3. The polyphase identity.

It is possible to satisfy (2) even when P = M. Readers
familiar with the idea of biorthogonal filter banks will rec-

ognize that with Gm(z)∆=Cm(z)Fm(z), the sets {Hk(z)}
and {Gm(z)} satisfying (2) form a biorthogonal filter
bank. However, even when the channels Cm(z) are known
and FIR, it is not true that there exist FIR solutions or sta-
ble IIR solutions Fm(z), Hk(z) satisfying (2). For example
when P = M = 1, the condition is like H(z)C(z)F (z) =
1 and cannot be satisfied when all three transfer functions
are FIR.

If we allow an interpolation factor P > M (redundant
transmultiplexer) then there are many advantages. For
example assume the channels are FIR:

Cm(z) =
L∑

n=0

cm(n)z−n (3)

Then if we choose P ≥ M + L, there is a clever way to
obtain perfect symbol recovery with FIR filters Fm(z) and
Hk(z), as we shall see.

II.3. Eliminating interblock interference

Figure 4 shows the mth transmitter and kth receiver re-
drawn in polyphase form [18]

Fm(z) =
P−1∑

i=0

z−iRi,m(zP ), Hk(z) =
P−1∑

i=0

ziEk,i(zP )

(4)



With noise ignored, the path between the mth transmitter
and kth receiver can be described in terms of a matrix
Cm(z) whose elements are

[Cm(z)]�,i = [z�−iCm(z)]↓P

For example when L = 2 and P = 5, Cm(z) is





P − L | L

cm(0) 0 0 | z−1cm(2) z−1cm(1)

cm(1) cm(0) 0 | 0 z−1cm(2)

cm(2) cm(1) cm(0) | 0 0

0 cm(2) cm(1) | cm(0) 0

0 0 cm(2) | cm(1) cm(0)





This is called the blocked version of Cm(z).
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Fig. 4. The mth transmitter and kth receiver in polyphase
form.

The preceding matrix is called a pseudocirculant and the
interested reader can find out more about it in [18] and
references therein. The first P −L columns have constant
entries and the last L columns have z−1 in them. Similarly
the last P−L rows have constant entries. Thus the blocked
version can be partitioned in two ways:

Cm(z) =
(P − L L

P Am B(z)
)

=





P

L C(z)

P − L D



 (5)

where Am is a P ×(P −L) matrix and D is a (P −L)×P
matrix (both constant Toeplitz matrices). In Fig. 4 the
transfer function from sm(n) to ŝk(n) is given by

[ Ek,0(z) Ek,1(z) . . . Ek,P−1(z) ]Cm(z)





R0,m(z)

R1,m(z)
...

RP−1,m(z)





Using (5) this can be written in either one of the two forms

[ Ek,0(z) Ek,1(z) . . . Ek,P−1(z) ]
(

Am B(z)
)





R0,m(z)

R1,m(z)
...

RP−1,m(z)





or

[ Ek,0(z) Ek,1(z) . . . Ek,P−1(z) ]

(
C(z)

D

)




R0,m(z)

R1,m(z)
...

RP−1,m(z)





Since B(z) and C(z) have z−1 in them, they represent in-
terference between input vectors occuring at different times
at the input of Cm(z). This is called inter-block interfer-
ence or IBI, and it is convenient to eliminate it. We will
describe two ways to construct the transmitter and receiver
filters in such a way that IBI is eliminated.

1. Zero-padding. In the first method we eliminate B(z)
by setting

RP−L,m(z) = . . . = RP−1,m(z) = 0.

That is, we insert a block of L zeros at the end of each
block of P−L symbols (Fig. 5(a)). This zero-padding
method is also called zero-prefixing.

2. Zero-jamming. In the second method we eliminate
C(z) by choosing

Ek,0(z) = . . . = Ek,L−1(z) = 0.

That is, we replace a block of L samples with zeros,
at the beginning of each block of P successive received
symbols (Fig. 5(b)).

Our discussions in this paper will be restricted to the zero
padding case. In the zero-padding method the transfer
function Tkm(z) from sm(n) to ŝk(n) is given by

[ Ek,0(z) Ek,1(z) . . . Ek,P−1(z) ]Am





R0,m(z)

R1,m(z)
...

RP−L−1,m(z)





(6)
where the P × (P − L) matrix Am has the form

Am =





cm(0) 0 . . . 0
cm(1) cm(0) . . . 0

...
...

. . .
...

cm(L)
0 cm(L)
...

. . .
...

0 0 . . . cm(L)





(7)

This represents the effects of the mth channel completely.
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Fig. 5. Two ways to force the effective channel matrix to
be a constant. (a) Zero-padding, and (b) zero-jamming.

III. CANCELLING MULTIUSER INTERFERENCE

The matrix Am given above is a full-banded Toeplitz ma-
trix. Because of this it has a very beautiful property: given
any nonzero number ρk, the matrix satisfies the equation

[ 1 ρ−1
k . . . ρ

−(P−1)
k ]Am = Cm(ρk) [ 1 ρ−1

k . . . ρ
−(P−L−1)
k ]

(8)

where Cm(z) =
∑

n cm(n)z−n as usual. This is quite

readilty verified directly.2 We exploit this in the choice of
our receiver and transmitter filters, and show how MUI can

2Since Toeplitz matrices represent convolution (LTI filtering)
when appropriately used, this property can be regarded as a
manifestation of the elementary fact that LTI systems reproduce
exponentials [10].

be cancelled. Consider the transfer function Tkm(z) given
by (6). Suppose we choose

Hk(z) = ak(1 + ρ−1
k z + ρ−2

k z2 + . . . + ρ
−(P−1)
k z(P−1)) (9)

Fm(z) = r0,m +r1,mz−1 + . . .+rP−L−1,mz−(P−L−1) (10)

where ρk are distinct for 0 ≤ k ≤ M−1. Using the identity
(8), Eq. (6) representing Tkm(z) can be rearranged as

ak [ 1 ρ−1
k . . . ρ

−(P−1)
k ]Am





r0,m

r1,m

...

r
P−L−1,m





= akCm(ρk) [ 1 ρ−1
k . . . ρ

−(P−L−1)
k ]





r0,m

r1,m

...

r
P−L−1,m





= akCm(ρk)Fm(ρk)

Thus the transfer function from sm(n) to ŝk(n) is

Tkm(z) = akCm(ρk)Fm(ρk) (11)

which is a constant independent of z. Assume further that
the multipliers ak are chosen as

ak =
1

Ck(ρk)
(12)

Then the perfect symbol recovery condition Tkm(z) =
δ(k − m) becomes

Fm(ρk) = δ(k − m), 0 ≤ k, m ≤ M − 1 (13)

Even with ρk chosen as arbitrary (but distinct) numbers,
these can be satisfied as long as Fm(z) have M degrees
of freedom (FIR with order ≥ M − 1). This gives the
condition P ≥ M + L which we shall replace with

P = M + L (14)

Then the preceding conclusions are valid as long as the
channel order ≤ L. The multipliers ak in Eq. (12) which
are part of the receiver filters (9) can be regarded as z-

domain equalizers. If ρk = ejωk these become frequency
domain equalizers.

A number of conclusions can be made here. The condi-
tion (13) guaratees that multiuser interference is cancelled
even if the channels are unknown. Only their order L
needs to be known. The knowledge of the channels is re-
quired only to design the equalizers (12) for each receiver.
Since FIR channels have only finite number of zeros, we
can always choose ρk so that Ck(ρk) �= 0. So, channel
equalization is always possible!



Example. The DFT filter bank. Assume Cm(z) =
C(z) for all m, P = M+L, and ρk = W−k, W

∆=e−j2π/M .
Then

Hk(z) =
1

C(W−k)

P−1∑

n=0

znWnk (15)

The PR condition (13) yields the transmit filters Fm(z) =∑M−1
n=0 W−mnz−n/M.
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Fig. 6. Zero-padding at the transmitter and cyclic-prefix-
like equalizers at the receiver.

If all users are in one place3 the system can be drawn as
shown in Fig. 6 where W is the M ×M DFT matrix and
W1 is the submatrix of W obtained by retaining the first
L = (P − M) columns. The equalizers

ak = 1/C(W−k) = 1/C(ej2πk/M ) (16)

invert the channel frequency response sampled on the DFT
grid.

If we start with the zero-jamming approach instead of
zero-padding, we can develop a similar example. After
going through the details we will discover the transceiver
shown in Fig. 7. Readers familiar with the cyclic prefix
system [16] will readily recognize it in this figure! Thus the
cyclic prefix system is a special case of the equalizer sys-
tem developed in this section and therefore has the perfect
symbol recovery property in absence of noise. Our analysis
above shows that the equalizers ak appearing in cyclic pre-
fix systems also appear naturally in a zero padding system.

3In the multiuser scenario, the symbol streams sm(n) are
separate independent users. On the other hand, in a context
like the DMT channel, sm(n) are obtained from one stream s(n)
by parsing [20].
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IV. CONTROLLING BANDWIDTH EFFICIENCY

The transmitter system of Fig. 2 makes a linear combina-
tion of M independent symbol streams. If these have to
be separated successfully later, then the spacing between
the samples of sk(n) must be at least M times larger than
the spacing T between the symbols entering the channels
Ck(z). But the actual spacing between samples of sk(n) is
PT secs. See Fig. 8(a) which demonstrates the idea with
T = 1. The excess space, measured by the ratio

γ =
P

M
=

M + L

M
,

is called the bandwidth expansion factor. It is a price paid,
in terms of the redundancy, which allows equalization of
FIR channels of order L.

A slight variation of the redundant transmultiplexer sys-
tem of Fig. 2 results if we make each user look like K users.
This can be done by blocking the mth user K-fold as in
Fig. 9. The K “subusers” sm,i(n) are merely substreams

of sm(n). The system is mathematically equivalent to MK
users, though the MK channels are not all different. The

perfect recovery requirement is now P̂ ≥ MK + L which
we replace with

P̂ = MK + L (17)

The advantage of this system is that the banwidth expan-
sion factor is now

γ̂ =
P̂

MK
=

MK + L

MK
(18)

which can be made arbitrarily close to unity by making K
large. See Fig. 8(b). MUI cancellation and equalization
can be achieved exactly as in the previous section by ap-
propriate design of the transmit and receiver filters. This is
precisely the Amour system developed by Giannakis et al.
[4] for MUI cancellation in CDMA systems wherein, each
of the Fm,i(z) is regarded as a CDMA code (each user has



K codes). There are K different coefficients ρk used by
each user, and these are called signature points in [4].
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V. OPTIMIZING FOR NOISE

If the statistics of the channel noise is known then it is
possible to optimize the receiver to reduce its effect. To
give a flavor for this we describe a scenario developed by
Lin and Phoong [8]. Consider again the transmultiplexer
of Fig. 1. With the transmitter and receiver filter banks
expressed in polyphase matrix form [18] we can draw the
transceiver as in Fig. 10. Assume as before that the filters
have order < P so E(z) and R(z) are constants. In the

zero-padding scheme

R(z) =
[
R0

0

]
(19)

where R0 is M × M. The transfer function from s(n) to
ŝ(n) is the product T(z) = E(z)Cb(z)R(z). where Cb(z)
is the blocked version of the channel (like Cm(z) in Fig.
4). With R(z) restricted as above, this becomes EAR0,
where A is as in Eq. (7). The condition for perfect recovery
in absence of noise is therefore

EAR0 = I (20)

With R0 and A given, the M × P matrix E has to be
chosen as a left inverse of AR0. Since P > M the left
inverse is not unique. The left inverse which minimizes the
channel noise at the receiver input is worked out in [8].

Consider again Fig. 1 and assume no redundancy,
that is, P = M. If we assume that we are allowed to
have 1/C(ejω) at the receiver and restrict the filter bank
{Fm(z), Hk(z)} to the class of orthonormal filter banks
[18], then an interesting result can be proved. Namely
the optimum filter bank which minimizes the probability
of error (for fixed bit rate and transmitted power) is the
so-called principal component filter bank or PCFB for the
effective power spectrum

Seff (ejω)∆=See(ejω)/|C(ejω)|2,

where See(ejω) is the power spectrum of the additive noise
e(n). Further details on this result can be found in [21].
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Fig. 10. Transmultiplexer of Fig. 1 in polyphase form.

All systems described in the preceding paragraphs fall
under the category of zero-forcing equalizers. i.e., equal-
izers which tend to cancel the effect of C(z) completely
without taking into account the effects of noise. It turns
out that this is not necessarily the best thing to do (in-

tuition: if C(ejω) is very small for some frequencies, then

1/C(ejω) can amplify the channel noise severely). There
exist equalizers based on minimizing the mean squared er-
ror between sk(n) and ŝk(n). These are called MMSE
equalizers. Some details can be found in [13] and [4].

VI. BLIND IDENTIFICATION

In many practical situations as in mobile communications,
the channel transfer functions are unknown, and have to be



estimated before they can be equalized. Such estimation
can be done either with the help of training signals or by
blind identification methods. It is well known that with
non redundant systems (P = M ) blind identification is
not possible unless we use fourth order moments such as
the Kurtosis of the data [15], [17]. An important result in
recent years is the observation that blind identification is
indeed possible without the use of fourth order moments, if
we use redundant transmultiplexers or filter bank precoders
[3], [14].

Consider again the single channel system of Fig. 10.
Assume as in Sec. V that the channel is FIR with order
≤ L, that the receiver filters have order ≤ P −1, and that
the transmitting filters have order ≤ M − 1. In particular
therefore R(z) is as in Eq. (19). Figure 11 shows the path
from the transmitted symbols to the channel output y(n).
For convenience we consider the blocked version y(n) as
indicated. With the vector s(n) as defined in the figure,
we then have

y(n) = AR1s(n)

where A is as in (7) and reproduded below:

A =





c(0) 0 . . . 0
c(1) c(0) . . . 0

...
...

. . .
...

c(L)
0 c(L)
...

. . .
...

0 0 . . . c(L)





This is a full-banded Toeplitz matrix representing the FIR
channel of order ≤ L.

y (n)0

y (n)
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channel
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z

z
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+
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z
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z
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z
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P
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P
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P

noise e(n)

y(n)

Fig. 11. The zero padding system with precoder R1.

Assume the channel c(n) is unknown. We now argue that
the observation of y(n) can be used to identify the chan-
nel c(n) upto a scale-factor ambiguity. This is called blind
identification because the input stream s(n) is unknown,
unlike in training-based channel identification. Briefly,
imagine we observe the output vector y(n) for a certain

duration, say 0 ≤ n ≤ J − 1, and write the equation

[y(0) y(1) . . . y(J − 1) ]︸ ︷︷ ︸
Y matrix; size P×J

= A︸︷︷︸
P×M

R1︸︷︷︸
M×M

[ s(0) s(1) . . . s(J − 1) ]︸ ︷︷ ︸
S matrix; size M×J

(21)

At this point we assume that the symbol stream s(n) is
rich, that is, there exists a J such that S has full rank M.
Since A and R1 have rank M , the product on the right
hand side of Eq. (21) has rank M. So the P × J data
matrix Y has rank M , and there are P −M or L linearly
independent vectors orthogonal to all the columns in Y.
That is, there is a L × P matrix V with L independent
rows such that

VY = VAR1S = 0 (22)

Since R1S has rank M , this implies

VA = 0 (23)

As V is L × P with rank L, there are P − L = M inde-
pendent columns which annihilate V from the right. But
the M columns of the lower triangular matrix A not only
annihilate V, they are linearly independent as well. So
any annihilator of V is in the column space of A. In par-

ticular consider nonzero vectors of the form

(
×
0

)
where

× has length L + 1. The only vector of this form which
annihilates V from the right is the 0th column of A. This
column (hence c(n)) can therefore be identified upto scale.

Does the method work when the data is contaminated
by noise? In this case we have y(n) = AR1s(n) + e(n),
where e(n) is the blocked version of channel noise e(n).
Assume s(n) and e(n) are jointly wide-sense stationary
and uncorrelated. Denoting the autocorrelation of y(n)
by Ry, and so forth, we then have

Ry − Re = AR1RsR
†
1A

†.

By repeating the preceding arguments about ranks and an-
nihilators, it is readily verified that the matrix on the right
has precisely L independent left-annihilators. Since the
left hand side can be estimated from the received signal
and noise statistics (assumed known), we can therefore es-
timate the L annihilators. These are also the annihilators
of A. So the channel can be identified as before.
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Figure 12. Result of equalization after blind identification.



Example. To demonstrate the idea with an example, we
consider a simple 4th order FIR channel (L = 4) with C(z)
given by −0.7684−0.8655z−1+0.4305z−2−0.3204z−3+
0.4992z−4. We choose a transmitter using a 64-QAM
constellation, and assume that s(n) is a blocked version
with M = 12 so there are 12 subusers sk(n). Therefore
P = M + L = 16. Assuming the noise e(n) is white and
the SNR at the channel output is 25 dB, we estimate the
channel using the above method. Once the channel is esti-
mated, it can be used in equalization. The scatter diagram
for the equalized signal is shown in Fig. 12.

VII. CONCLUDING REMARKS

One problem which was not addressed in this review is the
minimization of redundancy in the precoder.4 First ob-
serve that in Fig. 1 if we are allowed to have infinite length
equalizers then we can always use 1/C(ejω) to equalize the

channel, as long as C(ejω) does not have unit circle zeros.
In this case there is no need for redundancy, in fact no need
for the filter bank precoder at all. It is more interesting
and desirable to have FIR equalizers and we found that
the use of redundancy L (where L is the channel order) is
sufficient. But is it possible to have smaller redundancy?
The answer is indeed yes, under some conditions. The re-
sults are rather involved, and can be found in fairly recent
papers [23], [13], [9], [12].

Another interesting aspect that was not addressed is
resistance to channel nulls. To explain this idea recall that
the inverse of the channel response C(ρk) is often involved
in the equalization, for example Eq. (12) and Eq. (16).
If C(ρk) is very small or zero then we have a problem.
A simple way to overcome this difficulty is to add extra
redundancy of L samples in the precoder (e.g., instead of
adding L zeros in Fig. 6 add 2L zeros). In this way, the
coefficients C(ρk) are involved for M+L different values of
ρk. As shown in [7], this allows us a choice at the receiver
to choose any M out of the M + L values of C(ρk) for
equalization. Since C(z) has order L, at most L of these
C(ρk)’s could be zero and we can always pick the largest
M coefficients C(ρk) for equalization. Such designs are
called null-resistant designs. Many details on this can be
found in [4], [7].

Research on the topic of filter bank precoders is still
growing. For example there are four papers on filter bank
precoders in the Sept. 2003 issue of the IEEE Transac-
tions on Signal Processing! In [19] we introduce a new
frequency domain method for blind identification, which
offers some practical advantages. There remain many in-
teresting problems in this area as the reader will learn from
the other papers in this special session.
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