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Abstract

Filterbank transceivers are widely employed in data communication networks to cope with

inter-symbol-interference (ISI) through the use of redundancies. This dissertation stud-

ies the design of the optimal channel equalizer for both time-invariant and time-varying

channels, and wide-sense stationary (WSS) and possible non-stationary white noise pro-

cesses. Channel equalization is investigated via the filterbank transceivers approach. All

perfect reconstruction (PR) or zero-forcing (ZF) receiver filterbanks are parameterized

in an affine form, which eliminate completely the ISI. The optimal channel equalizer is

designed through minimization of the mean-squared-error (MSE) between the detected

signals and the transmitted signals. Our main results show that the optimal channel

equalizer has the form of state estimators, and is a modified Kalman filter. The re-

sults in this dissertation are applicable to discrete wavelet multitone (DWMT) systems,

multirate transmultiplexers, orthogonal frequency division multiplexing (OFDM), and

direct-sequence/spread-spectrum (DS/SS) based code division multiple access (CDMA)

networks. Design algorithms for the optimal channel equalizers are developed for different

channel models, and white noise processes, and simulation examples are worked out to

illustrate the proposed design algorithms.

x



Chapter 1

Introduction

1.1 Literature Review

Equalization is one of the techniques that can be used to improve the received signal quality

in telecommunications, especially in digital communications. Equalization compensates

for the inter-symbol-interference (ISI), which is a common problem in telecommunication

systems and wireless communication systems, such as television broadcasting, digital data

communications, and cellular mobile communication systems. In telecommunication sys-

tems, ISI occurs when the modulation bandwidth exceeds the coherence bandwidth of the

radio channel where modulation pulses are spread in time. For wireless communications,

ISI is caused by multipath in bandlimited time dispersive channels, and it distorts the

transmitted signal, causing bit errors at the receiver. ISI has been recognized as the major

obstacle to high-speed data transmission and multipath fading over radio channels.

An equalizer within a receiver compensates for the average range of the expected

channel amplitude and delay characteristics. In a broad sense, the term equalization can

be used to describe any signal processing operation that minimizes the ISI.

1
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Channel equalization has received great attention for the past two decades, and it has

received renewed interest in the research community due to the need for wireless commu-

nications, where the channels are inherently distorted due to multipath and dispersion,

and due to the increased demand for high speed data transmission.

There have been considerable efforts devoted to solving the ISI problem (see [75]

and references therein). One of the techniques is post-equalization, such as the least-

mean-squared (LMS) equalizer, and the decision feedback equalization (DFE), which were

studied in [6, 50, 51].

The idea of DFE is to cancel the ISI that may be caused by the current detected

symbol on future symbols by estimating and subtracting its ISI out prior to the detection

of subsequent symbols. DFE consists of two filters, feedforward filter, and feedback filter,

and decision device. The feedback filter coefficients are adjusted to cancel the ISI on

the current symbol, resulted from the previously detected symbols. This adjustment is

controlled by decisions of the output of the detector. The coefficients adjustment may

be achieved by a linear equalizer with LMS algorithms. Also, the feedforward filter co-

efficients may be adjusted to help canceling ISI on the current symbol. For conventional

DFE, the coefficients adjustment of the feedforward filter, and the feedback filter is car-

ried out jointly, while separately for predictive DFE. The convergence of these iterative

algorithms is dependent on the channel characteristics. For spectral null or frequency

selective fading channels, these algorithms converge very slowly and, therefore, become

computationally expensive.
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There exist many research results [56, 60, 65, 68] for post-equalization techniques,

with emphasis on blind equalization, where the channel is assumed to be unknown. The

existing work on blind equalization techniques, can be approximately divided into three

groups:

• high-order statistics techniques;

• second-order statistics techniques with oversampling;

• antenna array multi-receiver techniques;

Multicarrier modulation is also a technique to cope with the ISI, which aims to increase

the transmission system length to eventually cancel the ISI [14, 52, 75, 77]. Another

group of techniques is the use of precoding. Examples include Tomlinson-Harashima

(TH) precoding [29, 62], trellis precoding [20, 22], matched spectral null precoding in

partial response channels [33], and other precoding schemes [9, 34, 71, 73, 74]. The idea

of TH precoding is to equalize the signal before the transmission. The transmitter using

the TH precoding needs to know the channel characteristics, and thus the precoding is not

reliable when the channel has spectral null or frequency selective fading characteristics.

In fact, the pre-equalizer oscillates in a dramatic way when the channel is close to zero.

The trellis precoding scheme proposed in [20] whitens the noise at the equalizer output.

This scheme combines precoding and trellis shaping. Similar to the TH precoding, the

transmitter using the trellis precoding also needs to know the channel characteristics. The

trellis shaping depends on the channel and may not be suitable for spectral-null channels

either. An approach used for magnetic recording systems, is the matched spectral null
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precoding scheme [33]. The matched spectral null precoding, when dealing with partial

response channels, chooses certain error control codes to match the spectral nulls of partial

response channels in order to lose less signal information through the channel.

A mutual influence and interaction have been recently recognized between the fields

of multirate signal processing, and digital communications. Some of the popular commu-

nication applications can be described in terms of filterbanks configurations (transmulti-

plexers) of subband transforms. Such applications include the following.

• Frequency division multiple access (FDMA).

In FDMA individual channels are assigned to individual users. Each user is allocated

a unique frequency band or channel. These channels are assigned on demand to users

who request service.

• Time division multiple access (TDMA) systems.

In TDMA the radio spectrum is divided into time slots, and in each slot only one user

is allowed to either transmit or receive. Each user occupies a cyclically repeating

time slot, so a channel may be thought of as particular time slot that reoccurs every

frame, where a group of time slots comprises a frame.

• Code division multiple access (CDMA) systems.

In CDMA, the narrowband message signal is multiplied by a very large bandwidth

signal called the spreading signal. The spreading signal is a pseudo-noise code

sequence based on a chip rate which is orders of magnitudes greater than the data

rate of the message. All users in a CDMA system use the same carrier frequency,
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and may transmit simultaneously. Each user has its own pseudo-random codeword,

which is approximately orthogonal to all other codewords. The receiver performs a

time correlation operation to detect only the specific desired codeword.

In particular, FDMA which is also called orthogonal frequency division multiplexing

(OFDM) or discrete multitone (DMT) modulation-based systems have been more widely

used than the others.

The orthogonality of multicarriers was recognized early on as the proper way to pack

more subchannels into the same channel spectrum [49, 53, 72], (also see [77] and references

therein). Originally, a bank of analog Nyquist filters was used for the multicarrier modula-

tion techniques, which provide a set of continuous-time orthogonal functions. However, it

was impossible for a set of strictly orthogonal analog filters to be realized. Therefore, the

formulation was reworked into the discrete-time model. This discrete-time model makes

explicit use of the orthogonal filterbanks or transmultiplexers.

Transmultiplexers (filterbanks) were studied in the early 1970’s in [7] for telephony

applications. Their seminal work was one of the first dealing with multirate signal process-

ing, which has matured lately in the signal processing field. Among the recent research on

channel equalization, a multirate filterbank was proposed as a precoder before transmis-

sion in [75], which introduces the use of redundancy. An FIR (which is a non-maximally

decimated multirate filterbank) decoder was used at the receiver to eliminate the ISI.

Another framework for multirate filterbanks was proposed in [25, 57]. This framework is

of particular interest, which encompasses existing modulations and equalization schemes,

as well as general channel identifiability conditions, leading to possible optimal design
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of transmitter/receiver due to the redundancy for an FIR channel, and block transmis-

sion introduced by filterbanks. Although the results in [57] cover only a limited class

of channels having the drawback of high complexity, the filterbank approach shows the

promise for its future role in optimization for channel equalization, and minimization of

the mean-squared-error (MSE).

Some of the applications in digital communications have recently generated significant

research activities (see [77] and references therein). In particular two of them in multi-

carrier modulation (OFDM or DMT) techniques are discussed briefly as follows. First,

the coded orthogonal frequency division multiplexing (COFDM) has been forwarded for

terrestrial digital audio broadcasting (T-DAB) in Europe. Consequently, an European T-

DAB standard has been defined, and actual digital broadcasting systems are being built.

Second, a DFT-based DMT modulation scheme has become the standard for asymmet-

ric digital subscriber line (ADSL) communications, which provides an efficient solution

to the last mile problem (eg., providing high-speed connectivity to subscribers over the

unshielded twisted pair (UTP) copper cables) [17, 19, 31, 32]. In addition to these two

successful applications of multicarrier modulation, several emerging application areas, in-

cluding spread-spectrum orthogonal transmultiplexers for CDMA [3] and low probability

of intercept (LPI) communications [21, 54] have received great attention as well.

Filterbank transceivers (transmultiplexers) have been studied for the past several years

in the signal processing community, due to their capability for block transmission, and use

of redundancies for precoding, enabling complete elimination of ISI, which is one of the

major obstacles for data communications. Indeed for high-speed transmission over chan-
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nels such as digital subscriber loops, DWMT is a widely used technique [2, 15, 31, 32, 36],

of which realization relies on the design of redundant filterbank transceivers that effec-

tively divide the channel into subbands. Band separation is important in terms of alloca-

tion of transmission power and bits, because the noise can be highly frequency selective,

or nonflat. For FDMA (frequency division multiple access) in wireless communications,

multirate transmultiplexers are essential for dispersive channels with additive noise, due

to again their frequency separability and selectivity [11, 40, 55]. If the up-samplers and

down-samplers have higher ratio than the number of frequency bands, we have a model

of redundant filterbank transceivers. While DS/SS-based CDMA network is less obvi-

ous in its connection with redundant filterbank transceivers, [57, 66] have succeeded in

this regard. Thus in our opinion, redundant filterbank transceivers provide a common

mathematical model in data communications.

Because of the introduced redundancies, filterbank transceivers are capable of achiev-

ing channel equalization, which eliminate completely ISI under some mild conditions.

However optimal detection of the transmitted data symbols remains a major issue for

dispersive channels with additive noise, giving the rise of the optimal design problem for

the transceiver receivers, which is the main goal of this dissertation.

1.2 Dissertation Contributions

This dissertation is a continuation of the existing research in channel equalization, em-

phasizing on the design of filterbank transceivers (transmultiplexers) for the purpose of

eliminating the ISI completely, and minimizing the MSE of the received signals. Many
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researchers have contributed to this important problem area, focusing on the design of

FIR transceiver receivers to achieve MMSE [40, 66, 70]. It should be clear that MMSE

receivers in the existing literature are actually suboptimal by the fact that optimization

is carried out over all FIR filters of a fixed order. Their optimality over all possible lin-

ear, or nonlinear filters of possibly infinite order can not be claimed thus far. Although

Kalman filters have been employed in [11, 12, 39] for the design of optimal transceiver

receivers, the perfect reconstruction (PR), or the zero-forcing condition is neglected for

the noise-free case, raising the issue of ISI. Moreover a true MMSE detection without the

zero-forcing condition remains unsolved in general.

The contributions of this dissertation are as follows.

• Development of the new design algorithm for transceiver receivers achieving optimal

channel equalization for time-invariant channels and wide-sense stationary (WSS)

white noise processes.

Contrasting to the time-domain method used as in [25, 57], we will employ transfer

function and state-space methods to tackle the optimal design of channel equalizers,

which enable us to generalize the results in [57] to more general channels, to remove

the constraints on the filterbanks, and to reduce the complexity. Our contributions

include the necessary and sufficient condition for PR on the transmitter and receiver

filterbanks in the noise-free environment. Although joint transceiver optimization is

not investigated, a similar condition to the one in [57] can be used for the design of

the transmitter filters to ensure good SNR (signal-to-noise ratio). More importantly,

if the PR condition holds, all causal and stable receiver filterbanks which achieve PR
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are parameterized. Under the condition that the noise is white and WSS, we show

further that the optimal receiver filterbank or optimal channel equalizer has the

form of state estimators, and is a modified Kalman filter, which minimizes the MSE

among all possible linear time-invariant filters. The rich theory of Kalman filtering

enables the optimal design for transmitter/receiver filterbanks by employing efficient

and reliable numerical algorithms.

• Development of the new design algorithm for transceiver receivers achieving opti-

mal channel equalization for time-varying channels and non-stationary white noise

processes.

We consider the case where the estimated channel is available, and is time-varying,

due to the mobile and ubiquitous nature of cellular phones, and applications of the

filterbank transceivers to wireless data communications. We will study design of

the optimal receivers that achieve not only PR or zero-forcing, but also MMSE for

possible non-stationary white noise processes, among all possible linear and time-

varying filters of arbitrary orders. This is in contrast to the existing results in the

present literature. We will show that for redundant filterbank transceivers, the zero-

forcing receivers are equivalent to causal and stable left inverses of some “tall” matrix

of linear dynamic systems, consisting of the channel and transmitters. Such left

inverses are not unique. Any zero-forcing receiver filterbank accomplishes the goal

of channel equalization, and eliminates completely ISI. We will first parameterize

all zero-forcing channel equalizers in an affine form, and then seek one of them

to minimize the MSE caused by possible non-stationary white noises corrupted at
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the receivers, thereby converting the constrained optimization into unconstrained

optimization for receivers design. It will be shown that the design of optimal channel

equalizers is equivalent to the design of optimal state estimators for some augmented

system, subject to the same noise process. Hence the celebrated Kalman filtering can

be used successfully to design the optimal detectors among all channel equalizers,

which are truly optimal over all linear and time-varying receiver filters of arbitrary

order.

This dissertation is comprehensive in using the system theory and Kalman filtering

theory to approach channel equalization via filterbank transceivers. The results are sub-

mitted to the journal of IEEE transaction on signal processing of which two are under

review [5, 26]. It is hoped that the results in this dissertation will improve the technology

for channel equalization in filterbank transceivers.

1.3 Background Materials

This section introduces some standard techniques used in this dissertation to treat peri-

odic/multirate systems, and fundamental concepts in linear systems.

1.3.1 Sampling Rate Conversion

When dealing with signals having different sampling rate, sampling rate conversion is

needed. To achieve sampling rate conversion for discrete-time data streams in multirate

signal processing, two basic devices are used. One is called down-sampler (decimator, or

compressor), and the other is called up-sampler (interpolator, or expander).
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• Down-sampler and Up-sampler

A down-sampler by M and an up-sampler by P are shown in Figure 1.1 where M

and P are integers. Passing an input data stream s(n) through a down-sampler by M

produces an output signal Xd(n) where

Xd(n) = s(Mn).

In the Z-transform domain,

Xd(z) =
1

M

M−1∑

k=0

S(z1/MW k
M), WM = e−j2π/M , j =

√−1. (1.1)

The down-sampler retains only those samples of s(n) with n = kM and k = 0, 1, 2, · · ·.

The resulting signal xd(n) has a sampling rate 1/M of that of s(n). A properly designed

lowpass filter is usually used before the down-sampling process to eliminate the alias-

ing. Otherwise it may not be possible to recover s(n) from xd(n) because of the loss of

information due to the aliasing.

½¼

¾»
↓ M- -x(n) yd(n)

½¼

¾»
↑ P- -x(n) yu(n)

Figure 1.1: A down-sampler by M and an up-sampler by P

Passing an input data stream s(n) through an up-sampler by P produces an output

signal xu(n) where

xu(n) =





s(n/P ), n = kP, k = 0, 1, 2, · · ·
0, n 6= kP.

which has a sampling rate P times that of the original signal s(n). In Z-transform domain,

Xu(z) = S(zP ). (1.2)
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The input signal s(n) can be completely recovered from xu(n). In practice, a properly

designed lowpass filter is used after the up-sampling process to remove the unwanted

images in the spectrum of the up-sampled signal, which was caused by the up-sampling

process. The down-sampler and the up-sampler are linear but (periodically) time-varying

discrete-time systems.

• Cascade Equivalencies

Two useful and simple cascade equivalence relations, which are known as noble iden-

tities are illustrated in Figure 1.2. These relations are often used to convert periodically

time-varying systems into time-invariant systems, thus making the mathematical manip-

ulations of the multirate networks simpler.

½¼

¾»
↓ M G(z) G(zM)

½¼

¾»
↓ M

G(z)
½¼

¾»
↑ P

½¼

¾»
↑ P G(zP )

- - - - - -

- - - - - -

Figure 1.2: The noble identities for multirate systems

1.3.2 Blocking Signals

The standard technique for treating periodic/multi-rate systems is called blocking in signal

processing. Let `+ be the space of causal discrete-time signals defined on the time index

set {0,1,2,....}. A signal s in `+ can be written as

s = {s(0), s(1), s(2), · · ·} = {s(n)}∞n=0.
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For an integer M > 0, define the M -fold blocking operator, LM , via s = LMs (where

underlining denotes the blocked signal). Blocking a signal {s(n)}∞n=0 by a factor M con-

verts the serial data stream into M parallel substreams {sm(n) := s(nM + m)}∞n=0 for

m = 0, 1, · · · ,M − 1. Thus sm(n) is the mth symbol in the nth block of symbols, yielding

a blocked signal {s(n)}∞n=0:

s = {s(0), s(1), s(2), · · ·} 7→ s = {s(0), s(1), s(2), · · ·} (1.3)

=








s(0)

s(1)

...

s(M − 1)




,




s(M)

s(M + 1)

...

s(2M − 1)




, · · · .





The blocking operator LM maps `+ to `M
+ , the external direct sum of M copies of `+. If

the underlying sampling period for s is Ts, then the underlying sampling period for s is

MTs. The blocking operation results in no loss of information.

The blocking operation can be achieved using unit advance elements and down-samplers

by the blocking factor M as in Figure 1.3.

¹¸

º·
↓ M

¹¸

º·
↓ M

¹¸

º·
↓ M

- -

- -

- -

s(n)

z

z

z

s(nM)

s(nM + 1)

s(nM + M − 1)

...
...

Figure 1.3: Blocking a signal

In reality the unit advance element can not be implemented but blocking operation

can be achieved also by using unit delay elements which is implementable.
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1.3.3 Blocked Signal and Polyphase Decomposition

Applying the blocking operator LM to a signal {s(n)}∞n=0 yields a blocked signal

s = {s(n)}∞n=0, s(n) =




s0(n)

s1(n)

...

sM−1(n)




, (1.4)

where sm(n) = s(nM + m) for m = 0, 1, · · · ,M − 1 as earlier.

In the frequency domain, bring in the M -fold polyphase decomposition for the Z-

transform of s(n):

S(z) = Z{s} =
∞∑

n=0

s(n)z−n =
M−1∑

m=0

z−jSm(zM), Sm(z) =
∞∑

n=0

s(nM + m)z−n. (1.5)

The representation is unique for the given integer M . It follows that the mth polyphase

component Sm(z) is the Z-transform of {sm(n)}∞n=0 = {s(nM + m)}∞n=0, and there holds

S(z) =
∞∑

n=0

s(n)z−n =
[

S0(z) S1(z) · · · SM−1(z)

]T

, (1.6)

where the superscript T denotes transpose.

1.3.4 Blocking Systems

Consider the system in Figure 1.4(a) where an up-sampler is followed by a filter H(z) =

∑P−1
j=0 z−jHj(z

P ) which is represented by its polyphase components. The system is equiva-

lent to Figure 1.4(b) where the up-sampler by factor P goes to each polyphase component

branch. Applying noble identity to each branch of Figure 1.4(b) leads to an equivalent

system as in Figure 1.4(c).
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s(n)
-

¹¸

º·
↑ P H0(z

P )

H1(z
P )

HP−1(z
P )

j+ -

... ...

z−1

z−1

z−1

- -

-

-

6

u(n)

¹¸

º·
↑ P

¹¸

º·
↑ P

¹¸

º·
↑ P

H0(z
P )

H1(z
P )

HP−1(z
P )

j+- -

- -

- -

-

6

-
s(n) u(n)

z−1

z−1

z−1

... ...

¹¸

º·
↑ P

¹¸

º·
↑ P

¹¸

º·
↑ P

H0(z)

H1(z)

HP−1(z)

j+- -

- -

- -

-

6

-
s(n) u(n)

z−1

z−1

z−1

... ...

(a) (b) (c)

Figure 1.4: Blocking a system

The input-output relationship can be written as

U(z) =
P−1∑

j=0

z−jS(zP )Hj(z
P ).

That is, the polyphase components of U(z) are given by

Uj(z) = S(z)Hj(z), j = 0, 1, · · · , P − 1.

The blocked input-output relationship is given by

U(z) =




U0(z)

U1(z)

...

UP−1(z)




=




H0(z)

H1(z)

...

HP−1(z)




S(z). (1.7)

Let the time-invariant system H(z) be represented by its state-space model as

H(z) = Dh + Ch(zI − Ah)
−1Bh

= Dh + z−1Ch(I − Ahz
−1)−1Bh = Dh + z−1Ch

[ ∞∑

i=0

(Ahz
−1)i

]
Bh

= Dh + z−1Ch

[
I + Ahz

−1 + A2
hz
−2 + · · ·

]
Bh. (1.8)
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The state-space representation of the polyphase components of H(z) can be found using

the fact that the coefficients for the jth polyphase component are the coefficients of

z−(nP+j) for n = {0, 1, · · ·}. Therefore, the zeroth polyphase component of H(z) is given

by

H0(z
P ) = Dh + ChA

P−1
h Bhz

−P + ChA
2P−1
h Bhz

−2P + · · · = Dh + Ch

∞∑

i=1

AiP−1
h Bhz

−iP

= Dh + ChA
P−1
h

∞∑

i=1

(AP
h )i−1Bhz

−iP = Dh + ChA
P−1
h zP

∞∑

i=1

(AP
h z−P )i−1Bh

= Dh + ChA
P−1
h zP (I − AP

h z−P )−1Bh = Dh + ChA
P−1
h (zP I − AP

h )−1Bh.

Similarly, the jth polyphase component of H(z) where j = 1, 2, · · · has the form:

Hj(z
P ) = ChA

j−1
h Bh + ChA

P+j−1
h Bhz

−P + ChA
2P+j−1
h Bhz

−2P + · · ·

= ChA
j−1
h Bh + Ch

∞∑

i=1

AiP+j−1
h Bhz

−iP

= ChA
j−1
h Bh + ChA

P+j−1
h z−P [

∞∑

i=1

(AP
h z−P )i−1]Bh

= ChA
j−1
h Bh + ChA

P+j−1
h (zP I − AP

h )−1Bh.

Therefore, the vector of the polyphase components of H(z) can be written as




H0

H1

H2

...

HP−1




=




Dh

ChBh

ChAhBh

...

ChA
P−2
h Bh




+




Ch

ChAh

ChA
2
h

...

ChA
P−1
h




AP−1
h (zI − AP

h )−1Bh = D + C(zI − A)−1B.

(1.9)
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1.3.5 State-Space Models for Linear Systems

Let a finite dimensional discrete-time linear time-invariant system G be described by the

following state-space model:

x(n + 1) = Ax(n) + Bu(n), x(0) = x0, (1.10)

y(n) = Cx(n) + Du(n), n ≥ 0, (1.11)

where x(n) ∈ RN is called system state variable, x(0) is called initial condition, u(n) ∈ Rm

is called the system input, and y(n) ∈ Rp is the system output. The matrices A, B, C, and

D are appropriately dimensioned constant matrices. The corresponding transfer matrix

from u(n) to y(n) is defined as

Y (z) = G(z)U(z)

where U(z) and Y (z) are the Z-transform of u(n) and y(n) respectively with zero initial

conditions. Hence,

G(z) = C(zIN − A)−1B + D =




A B

C D


 .

The four-tuple matrix (A,B, C, D) is called a realization of G(z).

For time-varying case, let a finite dimensional discrete linear time-varying g(n, k) be

described by the following state-space model:

x(n + 1) = A(n)x(n) + B(n)u(n), x(0) = x0, (1.12)

y(n) = C(n)x(n) + D(n)u(n), n ≥ 0.

The matrices A(n),B(n), C(n), and D(n) are appropriately dimensioned time-dependent

constant matrices, which vary with time n. The corresponding convolution relation from
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u(n) to y(n) is defined as

y(n) = g(n, k) ? u(n) =
n∑

k=0

g(n, k)u(k)

where g(n, k) is a causal system

g(n, k) =




A(n) B(n)

C(n) D(n)


 .

• Important Concepts in Linear System Theory

Some important concepts and notions in linear system theory are reviewed briefly as

follows (see references [18, 76]).

Definition 1.1 The system described by state-space equation (1.10), or the pair (A,B)

is said to be controllable if, for some K > 0, initial state x(0) = x0, and final state x1,

there exists an input u(·) such that the solution of (1.10) satisfies x(K) = x1. Otherwise,

the system or the pair (A,B) is said to be uncontrollable.

Controllability is a system property. It can be shown that (A,B) is controllable, if

and only if the eigenvalues {λi(A+BF )} can be arbitrarily assigned through appropriate

design of the state feedback gain F .

Definition 1.2 The dynamical system described by equations (1.10) and (1.11) or by the

pair (C,A) is said to be observable if, for some K > 0, the initial state x(0) = x0 can be

determined from the time history of the input u(n) and the output y(n) in the interval of

[0, K]. Otherwise, the system or the pair (C, A) is said to be unobservable.
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Again the observability is a system property. It can be shown that (C,A) is observable,

if and only if the eigenvalues {λi(A+LC)} can be arbitrarily assigned through appropriate

design of the state estimation gain L.

Controllability and observability of a state-space system are dependent on its realiza-

tion, and in particular related to minimality of the realization.

Definition 1.3 A state-space realization (A,B,C,D) of G(z) is said to be minimal real-

ization of G(z) if A has the smallest possible dimension.

Theorem 1.1 A state-space realization (A,B,C, D) of G(z) is minimal, if and only if

(A,B) is controllable, and (C,A) is observable.

Stability is also an important notion for system theory which is given in the next

definition.

Definition 1.4 An unforced dynamical system x(n + 1) = Ax(n) is said to be stable if

for every nonzero initial condition x(0) ∈ RN , the state variable x(n) → 0 asymptotically.

That is, stability is equivalent to the condition that all eigenvalues of A lie strictly inside

of unit circle. A system matrix A is called stable, if the corresponding unforced dynamic

system is stable.

Stabilizability and detectability are two parallel notions to controllability and observ-

ability, respectively.

Definition 1.5 The dynamical system (1.10), or the pair (A,B), is said to be stabilizable

if there exists a state feedback u(n) = Fx(n) such that the overall system is stable, i.e.,



20

A + BF is stable. The system, or the pair (C, A), is said to be detectable if there exists

an output injection v(n) = Ly(n) such that the overall system is stable, i.e., A + LC is

stable.

Stability of the dynamic system (1.10) can be determined by using the Lyapunov

method.

Theorem 1.2 (Lyapunov) Suppose that (A,B) is stabilizable. Then a matrix A is a

stability matrix, if and only if the Lyapunov equation

P − APA∗ = BB∗

admits a unique solution P which is positive semi-definite. Similarly, suppose that (C,A)

is detectable. Then a matrix A is a stability matrix, if and only if the Lyapunov equation

Q− A∗QA = C∗C

admits a unique solution Q which is positive semi-definite.

For linear systems, a stronger notion can be used for stability.

Definition 1.6 The time-varying system described by the state-space model (1.12) is ex-

ponentially stable, or simply stable, if there exists an N0 > 0 such that

ρ




N+n0∏
n=n0

A(n)


 ≤ αβN , α > 0, 0 < β < 1,

for all N ≥ N0 > n0 ≥ 0, where ρ(·) denotes the spectral radius, and α, β are independent

of N .
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If the state-space model is time-invariant, or A(n) ≡ A is a constant matrix, then

exponential stability reduces to ρ(A) < 1. That is, for linear, time-invariant, and finite-

dimensional systems, stability and exponential stability are equivalent to each other. How-

ever such an equivalence does not hold in general for nonlinear and time-varying systems.



Chapter 2

Signal Models and Analysis

In this chapter, different signal and system models will be presented, and the input-output

analysis will be carried out for both time-invariant and time-varying systems, as well as

for the wide-sense stationary (WSS) and non-stationary white noises.

Channel equalization has been studied extensively in digital communications to com-

bat inter-symbol-interference (ISI) [50, 75]. It is shown in [41] that in the absence of

noise, a whitening filter is in fact a perfect equalizer. In fact the same holds for the

multiuser communication systems such as digital subscribe lines (DSL), and wireless code

division multiple access (CDMA) data networks, which are multi-input and multi-out

(MIMO) systems. In this chapter we will analyze several different system models, in-

cluding multi-channel, multirate, multirate filterbank transceiver models. The multirate

filterbank transceivers are widely used in discrete wavelet multitone (DWMT) and dis-

crete multitone (DMT) systems, and its mathematical form has a close connection with

the DS/SS (direct-sequence/spread-sequence) CDMA data networks, which are widely

used in the wireless communication systems. However we will begin with the noise model,

and then discuss different system models.

22
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2.1 Noise Model

A random process becomes a random variable when the time is fixed at some particular

value. The random variable possesses statistical properties, such as mean, variance and

moments. More generally, N -random variables possess statistical properties related to

their N -dimensional joint density function. Strictly speaking, a random process is said

to be stationary, if all its statistical properties do not change with time. Other processes

are called non-stationary. Stationary random processes require very stringent conditions,

which often do not hold in practice. A class of random processes satisfying less stringent

conditions than stationary is the following (see references [47, 48]).

Definition 2.1 A random process V (n) is called wide-sense stationary (WSS) noise pro-

cess, if the following two conditions are true:

E [V (n)] = V = constant

E [V (n)V (n + n0)] = RV (n0)

where E[ · ] denotes expectation, or mean.

The sequence {RV (n0)} is called autocorrelation of the random process V (n). By

analogy with “white” light that contains all visible light frequencies in its spectrum, we

define the WSS white noise as follows.

Definition 2.2 A sample noise signal v(n) of a WSS random process V (n) with zero

mean for all n is called white noise, if the power spectral density of V (n) is constant at
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all frequencies. That is, the power spectral density of a WSS white noise process V (n),

which is the Fourier transform of its autocorrelation function, is given by

SV V (w) =
N0

2
∀ ω, (2.1)

where N0 is a real positive constant.

The autocorrelation function of V (n) can be found by inverse Fourier transform of

(2.1) as

RV V (n0) =
N0

2
δ(n0). (2.2)

The white noise may not necessarily be WSS.

Definition 2.3 A sample noise signal v(n) of a non-stationary random process V (n) is

called white noise, if it has zero mean for all n, and if

E [V (n)V (n + n0)] = RV V (n)δ(n0) (2.3)

where δ(n0) = 0 for n0 6= 0, and δ(0) = 1.

By definition white noise processes are independent random processes. A more general

white noise process is bandlimited white noise process, defined for WSS random processes.

Definition 2.4 A WSS random process V (n) having nonzero and constant power spectral

density over a finite frequency band and zero elsewhere is called band-limited white noise.

Random processes can also be vector valued at each time n. Consider {V (n)}, where

V (n) is d-dimensional random vector for each n.
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Definition 2.5 A random vector process V (n) is called wide-sense stationary (WSS)

noise process, if the following two conditions are true:

E [V (n)] = V = constant,

E [V (n)V ∗(n + n0)] = RV (n0).

White noise random vector processes are defined as follows.

Definition 2.6 A sample noise signal v(n) of a WSS random process V (n) with zero

mean for all n is called white noise, if

E[V (n + n0)V
∗(n)] = RV δ(n0). (2.4)

A sample noise signal v(n) of a non-stationary random process V (n) with zero mean for

all n is called white noise, if

E[V (n)V ∗(n + n0)] = RV (n)δ(n0). (2.5)

Hence for the WSS white noise, its spectral density is a constant matrix RV for all

frequencies. But for non-stationary white noise, its frequency domain interpretation is

lost. Thought out this dissertation, white noise will be assumed for the signal model

used, due to its popularity, and close approximation to the noise processes encountered

in various communication channels.

2.2 Time-Invariant Models for Channel Equalization

Spacial diversity, and time diversity are often employed in wireless communication to

improve the quality of receiving signals. Spacial diversity corresponds to Figure 2.1 in
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which more than one channels are used to transmit a single signal, and thus is termed

as the multichannel model. The ith channel is represented by its transfer function Hi(z).

The receiver filters are represented by their transfer functions Gi(z) for i = 0, 1, · · · , P−1,

respectively.

j+

j+

H0(z)

HP−1(z)

G0(z)

GP−1(z)

s(n)

xP (n)

x1(n)
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Figure 2.1: Time-Invariant Multichannel models
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Figure 2.2: Time-Invariant Multirate model

On the other hand, the time diversity illustrated in Figure 2.2 employs an up-sampling

by P to increase the sampling rate, and z represents the unit advance operator. It can

be easily shown that the spacial diversity, and time diversity are equivalent to each other

in terms of channel estimation, and channel equalization. Indeed for Figure 2.2, let H(z)

be the channel transfer function, and S(z) be the Z-transform of the input data. Since



27

the output of the the up-sampler with size P is S(zP ), Y (z) is given by:

Y (z) = H(z)S(zP ) + V (z). (2.6)

Let the polyphase decomposition of H(z) and V (z) be defined by

H(z) =
P−1∑

p=0

z−pH(p)(zP ), V (z) =
P−1∑

p=0

z−pV (p)(zP ). (2.7)

Substituting the above expression into (2.6) yields

Y (z) =
P−1∑

p=0

z−p
[
H(p)(zP )S(zP ) + V (p)(zP )

]
. (2.8)

So the pth polyphase component of Y (z) for 0 ≤ p ≤ P − 1 is given by

Y (p)(z) = H(p)(z)S(z) + V (p)(z).

Thus Figure 2.1 and Figure 2.2 are equivalent with Hp(z) = H(p)(z) for 0 ≤ p ≤ P − 1.

For recovery of the transmitted signal S(z), the received signal Ŝ(z) is the sum of

filtered {Y (p)(z)}P−1
p=0 :

Ŝ(z) =
P−1∑

p=0

[
Gp(z)H(p)(z)S(z) + Gp(z)V (p)(n)

]
, (2.9)

where Gp(z) is the transfer function of the pth receiver filter. Let the system transfer

functions, and the noise be blocked with size P via

G(z) =
[

G1(z) · · · GP (z)

]
, H(z) =




H(1)(z)

...

H(P )(z)




, V (z) =




V (1)(z)

...

V (P )(z)




. (2.10)

Then the perfect reconstruction (PR) condition (which is a slight modification of the

zero-forcing condition in (2.38)) requires that

P∑

p=1

Gp(z)H(p)(z) = Kz−d, (2.11)
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for some integer d ≥ 0 and constant K 6= 0, where H(p)(z) and Gp(z) are Z-transforms of

the pth polyphase component of the channel, and pth receiver filter, respectively.

In contrast to the multichannel and multirate models in Figure 2.1, and Figure 2.2,

[25, 57] proposed a novel filterbank model as shown in Figure 2.3. It is clearly seen that

Figure 2.2 is a special case of Figure 2.3. Indeed, if M = 1 and F0(z) = 1, then the

filterbank in Figure 2.3 is identical to the multirate model in Figure 2.2. It consists of

the transmitter filterbank {Fm(z)}M−1
m=0 having down-samplers and up-samplers, the com-

munication channel represented by the transfer function H(z) which is assumed to be

causal and stable, and the receiver filterbank {Gm(z)}P−1
p=0 having down-samplers and up-

samplers. The observation noise at the output of the channel is assumed to be wide-sense

stationary (WSS), and white. It was demonstrated in [57] that the filterbank transceiver

provides a useful framework that unifies modulation, precoding, and equalization. Ex-

amples of its applications include orthogonal frequency division multiplexing (OFDM),

DMT, time-division multiple access (TDMA), CDMA, and discrete-wavelet multiple ac-

cess (DWMA).
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Figure 2.3: Multirate baseband equivalent transmitter/channel/receiver model
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2.2.1 Analysis of the Multirate Filterbank Model

It is seen from Figure 2.3 that the input serial data stream {s(n)}∞n=0 is converted into M

parallel substreams {sm(n) := s(nM +m)}∞n=0 for m = 0, 1, · · · ,M −1. Thus sm(n) is the

mth symbol in the nth block of symbols, which is the signal between the down sampler

by M and the upsampler by P in the mth branch of the transmitter filterbank. The

upsamplers by P insert (P−1) zeros after each symbol. Assuming P > M , the redundancy

introduced per transmitted block is measured by the ratio (P − M)/P , whereas at the

receiver, the rate is reduced by the same amount to restore the original input data rate.

By applying blocking operator LM to the input signal s(n), then

s(n) =
[

s(nM) s(nM + 1) · · · s(nM + M − 1)

]T

is the nth block of data with size M . It follows that the mth polyphase component Sm(z)

is the Z-transform of {sm(n)}∞n=0 = {s(nM + m)}∞n=0, and there holds

S(z) =
∞∑

n=0

s(n)z−n =
[

S0(z) S1(z) · · · SM−1(z)

]T

. (2.12)

Because in Z-transform, the signal Sm(z) after the up-sampler by P becomes Sm(zP ) for

0 ≤ m < M , the transmitted signal at the input of the channel, represented by H(z), is

given by

U(z) =
M−1∑

m=0

Sm(zP )Fm(z). (2.13)

Let the polyphase decomposition of Fm(z) be defined by

Fm(z) =
P−1∑

p=0

z−pFmp(z
P ), m = 0, 1, · · · ,M − 1. (2.14)
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Substituting the above expression into (2.13), and interchanging the order of summations

yield

U(z) =
P−1∑

p=0

z−j
M−1∑

m=0

Fmp(z
P )Sm(zP ) =

P−1∑

p=0

z−pUp(z
P ). (2.15)

So the pth polyphase component of U(z) is given by

Up(z) =
M−1∑

m=0

Fmp(z)Sm(z) =
[

F0p(z) F1p(z) · · · FM−1,p(z)

]
S(z).

If {u(n)}∞n=0 is blocked with size P at the input of the channel, then

U(z) :=
[

U0(z) U1(z) · · · UP−1(z)

]T

= F (z)S(z), (2.16)

where F (z) is the blocked transmitter filters of the form

F (z) =




F00(z) F10(z) · · · FM−1,0(z)

F01(z) F11(z) · · · FM−1,1(z)

...
... · · · ...

F0,P−1(z) F1,P−1(z) · · · FM−1,P−1(z)




(2.17)

which has {Fmp(z)}P−1
p=0 as the polyphase components of the mth transmitter filter.

Because the sampling rate through the channel is P times of the sampling rate for

the blocked signal {s(n)}, we block the input and output signals of the channel and the

corrupting noise with size P as follows:

U(z) =




U0(z)

U1(z)

...

UP−1(z)




, V (z) =




V0(z)

V1(z)

...

VP−1(z)




, Y (z) =




Y0(z)

Y1(z)

...

YP−1(z)




. (2.18)

After passing the signal {u(n)}∞n=0 through the channel represented by its transfer function

H(z), the output of the channel is given by X(z) = H(z)U(z). Upon substituting the
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polyphase decompositions of H(z) and U(z), X(z) can be written as

X(z) = H(z)U(z) =

[
P−1∑

i=0

Hi(z
P )z−i

] [
P−1∑

k=0

Uk(z
P )z−k

]

=
P−1∑

k=0

P−1∑

i=0

Hi(z
P )Uk(z

P )z−(i+k) =
P−1∑

k=0

[
k+P−1∑

n=k

Hn−k(z
P )z−n

]
Uk(z

P )

=
P−1∑

k=0

[
P−1∑

n=k

Hn−k(z
P )z−n +

k+P−1∑

n=P

Hn−k(z
P )z−n

]
Uk(z

P )

=
P−1∑

k=0

[
P−1∑

n=k

Hn−k(z
P )z−n +

k−1∑

n=0

z−n
(
Hn−k+P (zP )z−P

)]
Uk(z

P )

=
P−1∑

k=0

P−1∑

n=0

z−nH̃n,k(z
P )Uk(z

P ) =
P−1∑

n=0

z−n

{
P−1∑

k=0

H̃n,k(z
P )Uk(z

P )

}

where by inspection,

H̃n,k(z) =





Hn−k(z), n ≥ k,

z−1Hn−k+P (z), n < k.

That is, the pth polyphase component of X(z) is given by

Xp(z) =
M−1∑

k=0

H̃n,k(z
M)Uk(z

M) (2.19)

=
[

Hp(z) Hp−1(z) · · · H0(z) z−1HP−1(z) · · · z−1HP−p+1(z)

]
U(z)

where U(z) as in (2.18)

Block the channel output X(z) as

X(z) =
[

X0(z) X1(z) · · · XP−1(z)

]T

with the same size P . Then X(z) = H(z)U(z) = H(z)F (z)S(z). The blocked channel

transfer function H(z) follows from (2.19), and is given by

H(z) =




H0(z) z−1HP−1(z) · · · z−1H1(z)

H1(z) H0(z) · · · z−1H2(z)

...
... · · · ...

HP−1(z) HP−2(z) · · · H0(z)




(2.20)
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with {Hk(z)}P−1
k=0 the polyphase components of H(z). Taking the corrupting noise into

consideration yields the (blocked) received signal

Y (z) = X(z) + V (z) = H(z)F (z)S(z) + V (z). (2.21)

The use of V (z) should be interpreted as Sv(ω) = V (ejω)[V (ejω)]∗, the spectral density

function of the observation noise. Similarly the pth element of Y (z) is the Z-transform

of the signal in the pth branch of the receiver filterbank between the down-sampler and

up-sampler. This can be verified by noting the polyphase decomposition

Y (z) =
P−1∑

k=0

z−kYk(z
P ),

and that the kth polyphase component Yk(z) is also the kth element of Y (z), which, after

passing the up-sampler by M , becomes Yk(z
M). Therefore the reconstructed signal at the

output of the receiver filterbank is given by

Ŝ(z) =
P−1∑

k=0

Gk(z)Yk(z
M)

=
P−1∑

k=0

(
M−1∑

i=0

z−iGki(z
M)

)
Yk(z

M)

=
M−1∑

i=0

z−i

(
P−1∑

k=0

Gki(z
M)Yk(z

M)

)
=

M−1∑

i=0

z−iŜi(z
M),

where {Gki(z)}M−1
i=0 is the polyphase components of the kth receiver filter Gk(z) and

{Ŝi(z)}M−1
i=0 is the polyphase components of Ŝ(z). It follows that by blocking the recon-

structed signal {ŝ(n)}∞n=0 with size M or ŝ = LM{ŝ}, we have

Ŝ(z) = G(z)Y (z) = G(z)H(z)F (z)S(z) + G(z)V (z), (2.22)
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where the blocked receiver filterbank G(z) is given by

G(z) =




G00(z) G10(z) · · · GP−1,0(z)

G01(z) G11(z) · · · GP−1,1(z)

...
... · · · ...

G0,M−1(z) G1,M−1(z) · · · GP−1,M−1(z)




(2.23)

2.2.2 Transmultiplexers and Its Analysis

A typical filterbank transceiver in data communications is the multirate transmultiplexer

as shown in Figure 2.4, which is widely used in FDMA. It is also called OFDM or DMT.

DMT or multicarrier modulation utilizes a set of frequency selective orthogonal functions

in digital communications. Since functions in the orthogonal set are designed to be fre-

quency localized, DMT is of a frequency division multiplexing type (FDM) [10, 49]. The

terms DMT and OFDM are used interchangeably. Note that this technique multiplexes

the incoming bit stream of a single or multiple users into the frequency-selective sub-

carriers or subchannels. DMT modulation has been widely used in applications such as

ADSL, high bit-rate digital subscriber line (HDSL), and very high bit-rate digital sub-

scriber line (VDSL) communications for the single-user case. The digital subscriber line

is the local UTP telephone line. In fact, ADSL communication techniques provide the

means for high-speed digital transmission, up to 7 Mbps, over plain old telephone service

(POTS) for limited distances. A size 512 DFT-based DMT modulation scheme has been

standardized for the ADSL communications [17, 19].

DWMT system as proposed in [55] has the same structure as in Figure 2.4, which

is also common in DSL (digital subscriber lines). The differences between the DMT
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Figure 2.4: Time Invariant Multirate Transmultiplexer model for DMT/DWMT systems

systems is that for DWMT systems, different symbol blocks overlap in time, and thus

the DWMT system is also called overlapped DMT. On the other hand, for DMT sys-

tems, different symbol blocks do not overlap. Also the DWMT system uses fast wavelet

transform (FWT), and inverse fast wavelet transform (IFWT), instead of using discrete

Fourier transform (DFT) and inverse DFT (IDFT) to perform multicarrier demodulation

and multicarrier modulation, respectively.

Consider the transmultiplexer shown in Figure 2.4. On the transmitter side, the M

input data sequences {si(n)}M−1
i=0 are up-sampled by P , filtered or frequency shaped, and

then transmitted through the distorted channel. On the receiver end, the received signal is

contaminated by additive noise v(n), which is filtered, and then down-sampled, in hope to

recover the transmitted data sequences. It is assumed that P > M , which introduces the

redundancies, enabling PR in absence of noise. The advantages of using such multirate

transmultiplexers lie in the fact that the channel can be divided into M subbands, and M

transmitter filters can be designed to confine the modulated signals within their respective
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subbands, so that the transmission power and bits can be judiciously allocated according

to the SNR (signal-to-noise ratio) in each band to improve the bit error rate.

In [66], a new model for the DS/SS CDMA network was obtained, which is shown in

Figure 2.5. It is easy to see that the CDMA model shown in Figure 2.5 is a special case

of the DMT/DWMT model in Figure 2.4 with the channel transfer function H(z) = 1

and Fm(z) = Cm(z)Hm(z). However the DS/SS CDMA network has no frequency domain

interpretation such as subbands division. In fact all signals of different users use the same

frequency channel without dividing into the M subbands. It will be seen later that our

optimal channel equalization results apply to the CDMA systems as well.
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Figure 2.5: Time Invariant Multirate Transmultiplexer model for DS-CDMA Network

For the multirate transmultiplexer shown in Figure 2.4, the channel distortion is rep-

resented by the transfer function H(z) which is assumed to be causal and stable. By

using the polyphase decomposition of Fm(z) as in (2.14), the polyphase decomposition of

Gm(z) as follows:

Gm(z) =
P−1∑

p=0

z−pGmp(z
P ) =

P∑

i=1

z−i
(
zP Gm,P−i(z

P )
)
, m = 0, 1, · · · ,M − 1, (2.24)
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and by blocking both the transmitters and receivers filters (see Subsection 1.3.4), the

transmultiplexer as in Figure 2.4 has an equivalent filterbank transceiver as in Figure 2.6,

where F (z) is the same as in (2.17), and G(z) is given by

G(z) =




G0,0(z) z−1G0,P−1(z) · · · z−1G01(z)

G1,0(z) z−1G1,P−1(z) · · · z−1G11(z)

...
... · · · ...

GM−1,0(z) z−1GM−1,P−1(z) · · · z−1GM−1,1(z)




, (2.25)

with {Gki(z)}M−1
i=0 as the polyphase components (of size P ) of the kth receiver filter.
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Figure 2.6: Time-Invariant Blocked system

Although the expression of G(z) contains pure delay in each column except the first

one, which imposes a constraint on the design of the receiver filterbank, this problem

can be easily resolved by assuming that the receiver filters are strictly causal. Otherwise

we may assume that either the channel is strictly causal, or the transmitter filters are

all strictly causal. If none of the above assumptions holds, then we may either make a

suitable modification for the blocking in (2.18), or simply add a delay element before or
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after the channel in Figure 2.6, then the blocked receiver filters G(z) becomes

G(z) = z−1




G0,P−1(z) G0,P−2(z) · · · G0,0(z)

G1,P−1(z) G1,P−2(z) · · · G1,0(z)

...
... · · · ...

GM−1,P−1(z) GM−1,P−2(z) · · · GM−1,0(z)




, (2.26)

which again removes the constraint in (2.25). Clearly U(z), V (z), and Y (z) as in (2.18)

have the same sampling rate as the symbol rate for {Si(z)}M−1
i=0 . There holds

Y (z) = H(z)U(z) + V (z) (2.27)

where the blocked channel H(z) as in (2.20), and the blocked signal U(z) is given by

U(z) = F (z)S(z), S(z) =
[

S0(z) S1(z) · · · SM−1(z)

]T

, (2.28)

and F (z) as in (2.17). Combining (2.27) and (2.28) gives the rise of the following in-

put/output relation:

Y (z) = Φ(z)S(z) + V (z), Φ(z) = H(z)F (z). (2.29)

On the receivers end, the blocked output signal Ŝ(z) is given by

Ŝ(z) = G(z)Φ(z)S(z) + G(z)V (z), (2.30)

and Ŝ(z) =
[

Ŝ0(z) Ŝ1(z) · · · ŜM−1(z)

]T

.

In summary, both multirate filterbank model in Figure 2.3, and the transmultiplexer

model in Figure 2.4 admit a mathematically equivalent input-output relation of the fol-

lowing form

Ŝ(z) = G(z)Φ(z)S(z) + E(z), E(z) = G(z)V (z), (2.31)
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where the system in consideration is time-invariant, S(z), and Ŝ(z) are the Z-transforms

of the blocked input symbol and output symbol vectors, respectively, G(z) is the transfer

function matrix with size M × P of the blocked receiving filters to be designed, Φ(z)

is the transfer function matrix with size P × M of the composite system consisting of

the transmitter filters, and the channel. It is assumed that P > M , and Φ(z) is causal,

stable, and known, which can be estimated based on observed data. See [63] and references

therein for channel estimation. Strictly speaking, Z-transform of the blocked noise V (z)

is not meaningful mathematically, because the statistical information of the noise is lost.

As mentioned earlier, it should be interpreted from the point view of the spectral density

function of the noise via

Sv(f) = V (ejω)[V (ejω)]∗.

2.2.3 The Problem of Time-invariant Channel Equalization

Consider the input-output relation in (2.31) which is common for both multirate fil-

terbanks and transmultiplexers. Denote Hermitian of a complex matrix Γ by Γ∗, and

para-Hermitian of a transfer function matrix Λ(z) by Λ∗(z̄−1) with ·̄ conjugation. Then

the optimal channel equalizer, according to [57], is the one that minimizes the mean-

squared-error (MSE):

J = trace

{
1

j2π

∮

|z|=1
G(z)RvG

∗(z̄−1)
dz

z

}
, j =

√−1, (2.32)

where Rv is the covariance matrix of the blocked noise {v(n)}, subject to the PR condition:

Ŝ(z) = Kz−qS(z) in the noise-free case for some integer q ≥ 0, and constant K 6= 0. By
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(2.22), the PR condition is equivalent to

G(z)H(z)F (z) = Kz−q0




0 Ir

z−1IM−r 0


 , q = Mq0 + r + M − 1, (2.33)

in light of [69] where Is is the identity matrix of size s, and 0 ≤ r < M . By the WSS

and white assumption, the noise covariance matrix Rv = E [v(n)v∗(n)] is Hermitian, and

positive definite, independent of n. Due to the need for real time implementation, both

the transmitter and the receiver filterbanks are required to be causal and stable. Thus the

design of optimal channel equalizer is a constrained optimization problem: Design causal

and stable transmitter and receiver filters {Fk(z)}M−1
k=0 , {Gk(z)}P−1

k=0 that satisfy the PR

condition in (2.33), and minimize the performance index J as in (2.32).

2.3 Time-varying Models for Channel Equalization

While the transfer function representation provides a powerful tool for time-invariant

systems, it is not applicable to time-varying systems. We will develop parallel analysis

for the time-varying models in this section, using impulse responses and convolution

operators.

The time-varying multichannel model is illustrated in Figure 2.7. The ith time-varying

channel is represented by its impulse responses hi(n, k) at time n, with unit impulse input

applied at time k, where n and k are integer valued. The receiver filters are represented

by their impulse responses gi(n, k) for i = 0, 1, · · · , P − 1. On the other hand, the time-

varying multirate model (time diversity) illustrated in Figure 2.8 employs an up-sampling

by P to increases the sampling rate, and q represents the advance operator.



40

j+

j+

h1(n, k)

hP (n, k)

g1(n, k)

gP (n, k)

s(n)

xP (n)

x1(n)

vP (n)

v1(n)

yP (n)

y1(n)--

-

-

-

-

-

@
@

@
@R

¡
¡

¡
¡µ

k+- -
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Figure 2.7: Timevarying Multichannel model
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Figure 2.8: Timevarying Multirate model

It was shown that the spacial diversity, and time diversity are equivalent to each other

for the time-invariant models. For the sake of completion, the equivalence for the time-

varying case will be shown in the following. For the time-varying model in Figure 2.8, let

h(n, k) be the channel impulse response at time n with impulse input applied at time k.

Denote the pth polyphase component of the channel impulse response at time n by

h(p)(n, k) = h(n, kP + p− 1), 0 ≤ p ≤ P − 1. (2.34)
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Let y(p)(k) = y(kP + p− 1), and v(p)(k) = v(kP + p− 1) for 0 ≤ p ≤ P − 1. Then

y(p)(n) = yp(n) = h(p)(n, k) ∗ s(n) + v(p)(n) =
n∑

k=−∞
h(p)(n, k)s(k) + v(p)(n).

Thus Figure 2.7 and Figure 2.8 are equivalent as well for the time-varying case with

hp(n, k) = h(p)(n, k) for 0 ≤ p ≤ P − 1.

For recovery of the transmitted signal {s(n)}, the received signal {ŝ(n)} is the sum of

filtered {y(p)(n)}P−1
p=0 :

ŝ(n) =
P∑

m=1

gp(n, k) ∗
(
h(p)(n, k) ∗ s(n)

)
+ e(n)

=
P∑

m=1

(
gp(n, k) ∗ h(p)(n, k)

)
∗ s(n) + e(n)

=
n∑

i=−∞

[
P−1∑

m=0

(
n∑

k=i

gp(n, k)h(p)(k, i)

)
s(i)

]
+ e(n), (2.35)

where {gp(n, k)} is the impulse response of the mth (channel/polyphase) receiver filter at

time n with impulse input applied at time k, and

e(n) :=
P∑

m=1

gp(n, k) ∗ v(p)(n) =
P∑

m=1

n∑

i=−∞
gp(n, k)v(p)(k). (2.36)

Block the system impulse responses, and the noise with size P via

g(n, k) =




g1(n, k)

...

gP (n, k)




T

, h(n, k) =




h(1)(n, k)

...

h(P )(n, k)




, v(n) =




v(1)(n)

...

v(P )(n)




. (2.37)

Then the zero forcing condition requires that

g(n, k) ∗ h(n, k) =
P−1∑

p=0

(
n∑

k=0

gp(n, k)h(p)(k, 0)

)
= δ(n) =





1, n = 0,

0, n 6= 0.
(2.38)

There still holds that the filterbank model proposed in [25, 57] is a general framework

for signal models. It is clearly seen that Figure 2.8 is a special case of Figure 2.9. Indeed,
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Figure 2.9: A Timevarying Versatile Multirate Filterbank Transceiver

if M = 1 and f1(n, k) = δ(n − k), then the filterbank in Figure 2.9 is identical to the

multirate model in Figure 2.8.

2.3.1 Analysis of the Time-varying Filterbank Model

Similar to the time-invariant case the input serial data stream {s(n)}∞n=0 in Figure 2.9 is

converted into M parallel substreams {sm(n) := s(nM +m)}∞n=0 for m = 0, 1, · · · ,M − 1.

Thus the signal after the downsampler by M in the mth transmitter filter branch becomes

s(nM + m), and after passing it through the upsampler by P it becomes

bn/P c∑

k=0

s(kM + m)δ(n− kP ), 0 ≤ m < M,

with b·c denoting the integer part.

Let ûm(n) denote the output of the mth transmitter filter. Denote ? as the convolution

operation. There holds

ûm(n) = s(kM + m) ? fm(n, kP ) =
bn/P c∑

k=0

s(kM + m)fm(n, kP ). (2.39)

It follows that the input u(n) to the time-varying channel, represented by its impulse

response h(n, k), is the summation of the outputs of the transmitter filters ûm(n)M−1
m=0 ,
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given by

u(n) =
M−1∑

m=0

bn/P c∑

k=0

s(kM + m)fm(n, kP ), (2.40)

where the impulse responses of the transmitter filters are given by fm(n, k) for 0 ≤ m < M .

The input of the channel {u(n)}∞n=0 is blocked with size P , and the blocked u(n) is given

by

u(n) =
[

u(nP ) u(nP + 1) · · · u(nP + P − 1)

]T

. (2.41)

The pth element of the blocked signal u(n) for 0 ≤ p < P − 1 can be written as

u(nP + p) =
M−1∑

m=0

n∑

k=0

s(kM + m)fm(nP + p, kP ) (2.42)

=
n∑

k=0

[
f0(nP + p, kP ) f1(nP + p, kP ) · · · fM−1(nP + p, kP )

]
s(k)

where s(k) =
[

s(kM) s(kM + 1) · · · s(kM + M − 1)

]T

is the blocked {s(k)}∞k=−∞

with size M . It follows that

u(n) = f(n, k) ? s(n) =
n∑

k=0

f(n, k)s(k) (2.43)

where the blocked transmitter impulse response matrix is given as follows

f(n, k) =




f0(nP, kP ) f1(nP, kP ) · · · fM−1(nP, kP )

f0(nP + 1, kP ) f1(nP + 1, kP ) · · · fM−1(nP + 1, kP )

f0(nP + 2, kP ) f1(nP + 2, kP ) · · · fM−1(nP + 2, kP )

...
...

...
...

f0(n
′P − 1, kP ) f1(n

′P − 1, kP ) · · · fM−1(n
′P − 1, kP )




(2.44)

with n′ = n + 1, and {fm(n, k)}P−1
p=0 the impulse response of the mth transmitter filter

at time n to the unit impulse input applied at time k. Thus fm(nP + p, kP ) is the pth

polyphase component (of size P ) of the mth transmitter filter.
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The channel output x(n) is the convolution of the channel input signal {u(n)}∞n=0 and

the channel impulse response h(n, k) given by

x(n) = h(n, k) ? u(k) =
n∑

k=0

h(n, k)u(k).

Applying the blocking operator LP to the channel output signal yields

x(n) =
[

x(nP ) x(nP + 1) · · · x(nP + P − 1)

]T

.

The pth element of the blocked signal x(n) for 0 ≤ p < P can be written as

x(nP + p) =
∞∑

k=0

h(nP + p, k)u(k) (2.45)

=
n∑

k=0

P−1∑

j=0

h(nP + p, kP + j)u(kP + j)

=
n∑

k=0

[
h(nP + p, kP ) · · · h(nP + p, kP + P − 1)

]
u(k).

The output of the channel is also blocked with the same size P , or x = LP{x}, which

results in x(n) = h(n, k) ? u(n) =
∑n

k=0 h(n, k)u(k) where the blocked channel impulse

response matrix h(n, k) following from (2.45) is given by

h(n, k) =




h(nP, kP ) h(nP, kP + 1) · · · h(nP, kP + P − 1)

h(nP + 1, kP ) h(nP + 1, kP + 1) · · · h(nP + 1, kP + P − 1)

h(nP + 2, kP ) h(nP + 2, kP + 1) · · · h(nP + 2, kP + P − 1)

...
...

...
...

h(n′P − 1, kP ) h(n′P − 1, kP + 1) · · · h(n′P − 1, k′P − 1)




(2.46)

with h(n, k) the impulse response of the channel at time n to the unit impulse input

applied at time k. Thus h(nP + p, kP ) is the pth polyphase component (of size P ) of

the channel. Taking the corrupting noise into consideration yields the (blocked) received
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signal

y(n) = h(n, k) ? u(n) + v(n) = h(n, l) ? f(l, k) ? s(k) + v(n) (2.47)

=
n∑

l=0

l∑

k=0

h(n, l)f(l, k)s(k) + v(n),

where y(n) and v(n) are given by

y(n) =




y(nP )

y(nP + 1)

...

y(nP + P − 1)




, v(n) =




v(nP )

v(nP + 1)

...

v(nP + P − 1)




, (2.48)

with y(nP + p) the pth element of y(n). Similar analysis as in the transmitter filterbank

can be applied to the receiver filterbank, which gives the rise of the following equation for

the blocked reconstructed signal at the output of the receiver filterbank:

ŝ(n) = g(n, k) ?
[
h(n, k) ? f(n, k) ? s(n) + v(n)

]
(2.49)

=
n∑

j=0

j∑

l=0

l∑

k=0

g(n, j)h(j, l)f(l, k)s(k) +
n∑

k=0

g(n, k)v(k)

where Gj(n) is the blocked receiver filterbank given by

g(n, k) =




g0(nM, kM) g1(nM, kM) · · · fM−1(nM, kM)

g0(nM + 1, kM) g1(nM + 1, kM) · · · gM−1(nM + 1, kM)

g0(nM + 2, kM) g1(nM + 2, kM) · · · gM−1(nM + 2, kM)

...
...

...
...

g0(n
′M − 1, kM) g1(n

′M − 1, kM) · · · gM−1(n
′M − 1, kM)




(2.50)

with {gp(n, k)}P−1
p=0 the impulse response of the pth receiver filter at time n to the unit

impulse input applied at time k. Thus gp(nM +m, kM) is the mth polyphase component

(of size M) of the pth receiver filter.
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2.3.2 Time-varying Transmultiplexers and Its Analysis

For the time-varying case, there still holds that the DS/SS CDMA model shown in

Figure 2.10 is a special case of the transmultiplexer or the DMT/DWMT model with the

channel h(n, k) = δ(n− k), and fm(n, k) = cm(n, k) ? hm(n, k) as in Figure 2.11.
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Figure 2.10: Timevarying Multirate Transmultiplexer model for DS-CDMA Network
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Figure 2.11: Timevarying Multirate Transmultiplexer model for DMT/DWMT systems

Consider the multirate transmultiplexer shown in Figure 2.11. The channel distortion is

represented by the time-varying dynamic system h(n, k), which is the impulse response of

the channel at time n to the unit impulse input applied at time k, where n and k are integer

valued. Causality of h(n, k) implies that h(n, k) = 0 ∀ n < k. If the channel is time-
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invariant, then h(n, k) = h(n − k). The reason to consider time-varying channels is the

need for its applications to wireless communications, where cellular users move constantly,

and the channels are dispersive. Because the sampling rate through the channel is P times

of the symbol rate, we block the input and output signals of the channel with size P as

in (2.41) and (2.48). Clearly u(n), v(n), and y(n) have the same sampling rate as the

symbol rate for {si(n)}M−1
i=0 . If the channel is causal, then there holds

y(n) = h(n, k) ? u(n) + v(n) =
n∑

k=0

h(n, k)u(k) + v(k), (2.51)

where we assume that the system was at rest at time n = 0, and h(n, k) is the impulse

response of the blocked channel at time n to the unit impulse input applied at time

k, given as in (2.46). The expression for h(n, k) can be easily verified through routine

calculations. It can also be verified that the blocked signal u(n) satisfies the convolution

relation

u(n) = f(n, k) ? s(n) =
n∑

k=0

f(n, k)s(k) (2.52)

where s(n) =
[

s0(n) s1(n) · · · sM−1(n)

]T

, and f(n, k) as in (2.44). Combining (2.51)

with (2.52) gives the rise of the following input/output relation:

y(n) = φ(n, k) ? s(n) + v(n), φ(n, k) = h(n, k) ? f(n, k) =
n∑

i=k

h(n, k)f(i, k), (2.53)

by the convolution property, the causality of the input, and the fact that the system was

at rest at time n = 0. On the receivers end, there holds dynamic relation

ŝ(n) = g(n, k) ? y(n) =
n∑

k=0

g(n, k)y(k) (2.54)
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where ŝ(n) =
[

ŝ0(n) ŝ1(n) · · · ŝM−1(n)

]T

, and

g(n, k) =




g0(nP, kP ) g0(n
′P − 1, kP ) ? q−1 · · · g0(nP + 1, kP ) ? q−1

g1(nP, kP ) g1(n
′P − 1, kP ) ? q−1 · · · g1(nP + 1, kP ) ? q−1

...
...

...
...

gM−1(nP, kP ) gM−1(n
′P − 1, kP ) ? q−1 · · · gM−1(nP + 1, kP ) ? q−1




,

(2.55)

with q−1 the delay operator; That is, for any time domain signal x(n), q−1x(n) = x(n−1)

for each n, and for any dynamic system with impulse response h(n, k), q−1 ? h(n, k) =

h(n− 1, k) and h(n, k) ? q−1 = h(n, k − 1) for each n and k.

In light of (2.28), (2.53), and (2.54), we arrive at

ŝ(n) = g(n, k) ? [φ(n, k) ? s(n) + v(n)] , φ(n, k) = h(n, k) ? f(n, k), (2.56)

yielding an equivalent filterbank transceiver as in Figure 2.12. Thus, the time-varying

filterbank transceiver model admits again the same input-output relation as in (2.58).
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Figure 2.12: Timevarying Blocked system

Although the expression of g(n, k) contains pure delay in each column except the first

one, which imposes a constraint on the design of the receiver filterbank, this problem can
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be easily resolved as in the time-invariant case. We may assume either strictly causal

receiver filters, or strictly causal channel, or strictly causal transmitter filters, or simply

adding a delay element before or after the channel in Figure 2.12. Then the blocked

receiver filters g(n, k) becomes

g(n, k) =




g0(n
′P − 1, kP ) g0(n

′P − 2, kP ) · · · g0(nP, kP )

g1(n
′P − 1, kP ) g1(n

′P − 2, kP ) · · · g1(nP, kP )

...
...

...
...

gM−1(n
′P − 1, kP ) gM−1(n

′P − 2, kP ) · · · gM−1(nP, kP )




? q−1. (2.57)

In summary, both time-varying multirate filterbank model in Figure 2.9 and the time-

varying transmultiplexer model in Figure 2.11 admit a mathematical equivalent input-

output relation of the following form

ŝ(n) = g(n, k) ? φ(n, k) ? s(n) + e(n), e(n) = g(n, k) ? v(n), (2.58)

where g(n, k) is the impulse response of the time-varying receiver filter matrix with size

M × P to be designed, and φ(n, k) is the impulse response of the time-varying system

matrix with size P ×M that represent the transmitter filters and the channel. It is again

assumed that φ(n, k) is known or can be estimated, which is causal and exponentially

stable. It should be clear that (2.58) is parallel to (2.31), which is for the time-invariant

case.

2.3.3 The Problem of Time-varying Channel Equalization

For optimal channel equalization, our objective is to recover the input data stream per-

fectly in absence of the noise, and to minimize the MSE, if the noise is present. That is,

for the given transmitter filterbank f(n, k), and the distorted channel h(n, k), which are
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possibly time-varying, we seek a causal and stable receiver filterbank g(n, k) such that it

minimizes

J(g)(n) := E[e∗(n)e(n)] = trace {E[e(n)e∗(n)]} , e(n) = g(n, k) ? v(n), (2.59)

with v possibly non-stationary white noise, subject to the zero-forcing or PR condition

g(n, k) ? φ(n, k) = δ(n− k)IM =





IM , t = k,

0, t 6= k,
(2.60)

where the superscript ∗ denotes conjugate transpose. The zero-forcing condition is equiva-

lent to that the receiving filterbank g(n, k) is a causal and stable left inverse of φ(n, k), and

any g(n, k) achieving (2.60) is a channel equalizer, which eliminates the ISI completely.



Chapter 3

Optimal Equalization for
Time-invariant Channels with WSS
White Noise

3.1 Introduction

The importance of channel equalization has been discussed in the previous chapters.

This chapter will investigate optimal channel equalization for time-invariant channels,

in presence of WSS white noises. Different from the conventional channel equalization,

multiuser data networks allow perfect reconstruction (PR) for the multiple input data

signals due to the use of redundancies, provided that some mild conditions on the channel

and transmitter filters are satisfied. We will employ the transfer function and state-space

methods to tackle the optimal design for channel equalization. The focus will be on the

filterbank transceivers introduced, and studied in [25, 57], which provide an important

framework for data communication network, although our results also apply to other

data networks, which are discussed in Chapter 2. Specifically our work generalizes the

results in [57] to more general channels, removes the constraints on the filterbanks, and

reduces the complexity. Our contributions include the necessary and sufficient condition

51
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for PR on the transmitter and receiver filterbanks in absence of the noise. It should be

mentioned that while joint transceiver optimization is not investigated in this chapter, a

similar condition to [57] can be used for the design of the transmitter filters to ensure

good signal-to-noise ratio (SNR). More importantly, if the PR condition holds, all causal

and stable receiver filterbanks which achieve PR are parameterized. Under the condition

that the noise is WSS and white, we show further that the optimal receiver filterbank

or optimal channel equalizer has the form of state estimators, and is a modified Kalman

filter, which minimizes the MSE among all possible linear time-invariant filters. The rich

theory of Kalman filtering enables the optimal design for transmitter/receiver filterbanks

by employing efficient and reliable numerical algorithms. Our proposed design algorithm

will be illustrated by a simulation example, which has a substantially smaller overall MSE

than in [57].

As discussed in the previous chapter, design of optimal channel equalizer is a con-

strained optimization problem: Design causal and stable transmitter and receiver filters

{Fk(z)}M−1
k=0 , {Gk(z)}P−1

k=0 that satisfy the PR condition in (2.33), and minimize the per-

formance index J as in (2.32). In reference to the filterbank transceivers as in Figure 2.3,

this problem is partially solved in [57] by assuming the following:

(i) The channel, represented by H(z), is an Lth order FIR filter with impulse response

{h(n)}L
n=0 satisfying h(0) 6= 0, and h(L) 6= 0.

(ii) (P, M, L) are chosen such that P > M and P > L.

(iii) Each transmitter filter Fk(z) is causal and FIR with order no greater than P for
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0 ≤ k < M , and each receiver filter Gp(z) for 0 ≤ p < P is also causal and FIR

with order QM for some integer Q satisfying P ≥ M + dL/Qe, with d·e denoting

the ceiling integer.

Under the above three assumptions, a design procedure is developed in [57] to design

both the transmitter and the receiver filterbanks which achieve PR in the noise-free case,

and which minimize the performance index function J as in (2.32). Moreover various

other joint optimization criterion for the transceiver filterbank as in Figure 2.3 are inves-

tigated in [57] with complete results. It is important to notice that the joint transceiver

optimization is necessary, due to the absence of the blocked transmitter filterbank F (z) in

the performance index (2.32). Indeed, ideally one would prefer large gains for the blocked

transmitter filterbank F (z), which implies large SNR at the output of the channel. Thus

if the PR condition (2.33) holds for some transmitter filterbank F (z) and receiver filter-

bank G(z), then we can always replace F (z) by ρF (z), and G(z) by ρ−1G(z), so that the

PR condition (2.33) holds for any ρ 6= 0. By taking ρ →∞, the performance index (2.32)

can be made arbitrarily small. Such a drawback is overcome by the joint transceiver

optimization in [57], leading to the following design constraints:

(a) G(z) = cF ∗(z̄−1)H∗(z̄−1)R−1
v , (b) F ∗(z̄−1)H∗(z̄−1)R−1

v H(z)F (z) = KIM , (3.1)

where c 6= 0 can be arbitrary, and K > 0. (a) implies that the composite transfer

function matrix F (z)H(z) has to be FIR, and (b) implies that
√K−1

RvF (z)H(z) is power

complementary [69], where R−1
v = R̃∗

vR̃v for some R̃v. Such design constraints can only

be ensured by assuming (i) – (iii), which give rise of high complexity due to P > L.
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Because transmitter filters need take wave shaping, filtering, precoding, and modulation

into consideration, F (z) may not be completely free for channel equalization. While (b)

can always be made true1, (a) will be removed in this dissertation. Thus it will be assumed

in this dissertation that the transmitter filterbank is either given/estimated, or satisfies

(b). Our goal is to design an optimal receiver filterbank which minimizes J as in (2.32),

subject to the PR condition as in (2.33), without assuming (i) – (iii).

3.2 Causal and Stable Left Inverses and the PR Con-

dition

In this section, we will assume that the channel transfer function H(z), and the transmitter

filters {Fk(z)}M−1
k=0 are given to us, and are known. We will first investigate the PR

condition (2.33), or the existence of the receiver filters {Gk(z)}P−1
k=0 such that the PR

condition (2.33) holds for some integer q > 0, and constant K 6= 0.

Theorem 3.1 Suppose that the channel transfer function H(z), and transmitter filters

{Fk(z)}M−1
k=0 are causal and stable. Then there exist causal and stable receiver filters

{Gk(z)}P−1
k=0 such that the PR condition (2.33) holds, if and only if there exist some inte-

gers q0 and r such that for 0 ≤ r < M ,

rank





zq0H(z)F (z)




0 zIM−r

Ir 0








= M ∀|z| ≥ 1 (including |z| = ∞). (3.2)

If (3.2) holds, then for the filterbank transceiver model in Figure 2.3, Ŝ(z) = z−qS(z) in

the noise-free case with q = Mq0 + r + M − 1.

1If (b) is not satisfied, then we may set F new(z) = FΩ−1(z), where Ω(z) is the spectral factor satisfying
Ω∗(z̄−1)Ω(z) = F ∗(z̄−1)H∗(z̄−1)R−1

v F (z)H(z). In this case F new(z) satisfies (b), in place of F (z).
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Proof: The PR condition (2.33) is equivalent to

G(z)


K−1zq0H(z)F (z)




0 zIM−r

Ir 0





 = IM ∀ |z| ≥ 1

for some integers q0 and r with 0 ≤ r < M . Thus PR implies that G(z) is a causal and

stable left inverse of the transfer function matrix in (3.2), which implies the rank condition

in (3.2). Conversely if the rank condition in (3.2) is true, then a causal and stable G(z)

exists such that the PR (2.33) holds [44] (which will be made clear subsequently).

The PR condition established in Theorem 3.1 is not as transparent as what we would

like it to be, because of the use of the blocked transfer function matrices of H(z) and F (z),

rather than the channel transfer function H(z) and the transmitter filters {Fk(z)}M−1
k=0 .

However we do have the following characterization of the PR condition for the case P >

M = 1.

Corollary 3.1 Suppose that P > M = 1 with F0(z) = F00(z
P ), and the hypothesis as

in Theorem 3.1 holds. Then the PR condition as in (2.33) is true, if and only if F00(z)

is strictly minimum phase, i.e., F00(z) 6= 0,∀|z| ≥ 1, and the channel transfer function

H(z) has no P finite zeros equally distributed on the circle of radius greater than or equal

to 1.

Proof: The hypotheses imply that

H(z)F (z) =
[

H0(z) H1(z) · · · HP−1(z)

]T

F00(z)

which is a column of transfer functions. Thus there exists an integer q0 ≥ 0 such that

Φ(z) = zq0H(z)F (z) = φ0 + φ1z
−1 + φ2z

−2 + · · ·
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with φ0, a nonzero column vector of size P . Then z0 is a zero of Φ(z), if and only if it is

a zero of F00(z), or it is a common zero of Hk(z) for 0 ≤ k < M . If z0 is not a zero of

F00(z), then Hk(z) = (z− z0)H̃k(z) for some H̃k(z) having no pole at z = z0 and for each

k. The fact that Hk(z) is the kth polyphase component of H(z) implies that

H(z) = (zP − z0)
P−1∑

k=0

z−kH̃k(z
P ).

Because the roots of zP − z0 = 0 are equally distributed on the circle of of radius ρ =

|z0|1/P , H(z)F (z) has rank 1 for all |z| ≥ 1, if and only if F00(z) or F0(z) is strictly

minimum phase, and the channel transfer function H(z) has no P finite zeros equally

distributed on the circle of radius greater than or equal to 1. The zeros at infinity can

be taken care of by choosing integer q0 ≥ 0 appropriately in Φ(z). Thus the corollary is

true, in light of Theorem 3.1.

Corollary 3.1 shows that at least for the case M = 1, PR condition can be made true

by designing a strictly minimum phase filter F0(z) = F00(z
P ), and by taking adequately

large P . A simple case is to take F0(z) ≡ 1, and generically for P ≥ 3, the PR condition

(3.2) holds. In fact very often the PR condition in Corollary 3.1 is true even for the case

P = 2. It is noted that the strict minimum phase condition is not required in [57] due to

assumptions (i) – (iii). That is, the strict minimum phase condition can be removed by

increasing the complexity or number of transmitter and receiver filters. Conversely the

high complexity issue in [57] can be resolved only if the strict minimum phase condition

is restored.
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Theorem 3.1 shows that the PR condition is equivalent to the existence of a causal

and stable left inverse G(z). Assume K = 1. Denote

Φ(z) = zq0H(z)F (z)




0 zIM−r

Ir 0


 . (3.3)

We will use a similar method as in [44] to derive a specific left inverse of Φ(z). For this

purpose, we assume that the PR condition as in (3.2) holds, and there exists a minimum

state-space realization for Φ(z) of the form

Φ(z) = D + C(zIN − A)−1B =




A B

C D


 , (3.4)

with A of size N × N , B of size N ×M , C of size P × N , and D of size P × N . The

minimum realization of Φ(z) implies that its McMillan degree is exactly N . The PR

condition in Theorem 3.1 is now equivalent to that D has full column rank, and

rank




A− zIN B

C D


 = N + M ∀|z| ≥ 1. (3.5)

Since P > M , D having full column rank implies the existence of D⊥ such that Da =
[

D D⊥

]
is square and nonsingular. In particular, D⊥ can be chosen from the minimum

rank Cholesky factorization

D⊥D∗
⊥ = D0⊥D∗

0⊥ := IP −D(D∗D)−1D∗. (3.6)

It follows that left inverses of D and D⊥ exist, denoted by D+ and D+
⊥, respectively, and

satisfy 


D+

D+
⊥




[
D D⊥

]
=




IM 0

0 IP−M


 . (3.7)
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A specific left inverse of D is D+ = D+
0 := (D∗D)−1D∗. It follows that

Φ(z) =
[
IP + C(zIN − A)−1(BD+ −KD+

⊥)
]
D

for any constant matrix K of size N × (P −M). Hence with BK := BD+ −KD+
⊥,

Φ̃(z) = D+
[
IP + C(zIN − A)−1BK

]−1
= D+

[
IP − C(zIN − AK)−1BK

]
(3.8)

is a left inverse of Φ(z) with AK := A−BD+C +KD+
⊥C. It is noted that K has the form

of state estimation gain. One may speculate that the optimal left inverse, the one having

the smallest mean-squared value, is a Kalman filter which turns out to be incorrect. It will

be shown in the next section that the optimal state estimator, or the optimal left inverse

is a modified Kalman filter. But it should be clear now that Φ(z) is strictly minimum

phase, if and only if AK is asymptotically stable, i.e., all eigenvalues of AK are strictly

inside the unit circle. If AK is asymptotically stable, we will say that K is stabilizing. By

the property of D⊥,

Φa(z) =
[

Φ(z) Φ⊥(z)

]
:=

[
IP + C(zIN − A)−1BK

] [
D D⊥

]

is square, and strictly minimum phase, if Φ(z) is, and K is stabilizing. In this case,

Φ−1
a (z) =

[
D D⊥

]−1 [
IP + C(zIN − A)−1BK

]−1
(3.9)

=




D+

D+
⊥




[
IP − C(zIN − AK)−1BK

]
=:




Φ̃(z)

Φ̃⊥(z)




is causal and stable. Similar to the constant case, there holds




Φ̃(z)

Φ̃⊥(z)




[
Φ(z) Φ⊥(z)

]
=




IM 0

0 IP−M


 . (3.10)
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In the next section, we will derive an optimal state estimation gain Kopt, and show that

with G(z) = Φ̃(z) and K = Kopt, the channel equalization performance index J as in

(2.32) is minimized among all linear and time-invariant filters.

3.3 Optimal Channel Equalizer

Although the left inverse Φ̃(z) in (3.8) involves state estimation gain K, it does not have

the form of Kalman filter, and K is not the same as the Kalman gain. The main reason

is that the left inverse D+ is not unique. Indeed, all left inverses of D are given by

D+ = D+
0 + ΘD+

0⊥, D+
0 := (D∗D)−1D∗, (3.11)

where Θ of size M×(P−M) is a free matrix. Thus the left inverse Φ̃(z) as in (3.8) involves

two free parameters in optimization, which is beyond the Kalman filter. Furthermore not

all causal and stable left inverses of Φ(z) are in the form of Φ̃(z) as in (3.8), which poses

the difficulty in design of optimal channel equalizers. Our strategy is to first parameterize

all causal and left inverses so that the constrained optimization problem as in Subsection

2.2 can be converted into unconstrained optimization, and then derive the optimal receiver

filterbank.

It is noted that with D0⊥ defined as in (3.6), D+
0⊥ = D∗

0⊥. For any left inverse D+ as

in (3.11), we can choose

D⊥ = −DΘ + D0⊥, D+
⊥ = D+

0⊥ = D∗
0⊥, (3.12)

so that the identity (3.7) holds true. The next lemma parameterizes all causal and stable

left inverses of Φ(z).
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Lemma 3.1 Suppose that Φ(z) as in (3.3) satisfies the strict minimum phase condition

(3.5), and D has full column rank M . Let Φ̃(z) be as in (3.8), and Φ̃⊥(z) as in (3.9) for

some stabilizing gain K with D+ as in (3.11), and D⊥ and D+
⊥ as in (3.12). Then Φ+(z)

is a causal and stable left inverse of Φ(z), if and only if

Φ+(z) = Φ̃(z) + Q(z)Φ̃⊥(z) (3.13)

for some causal and stable Q(z).

Proof: It is noted that Φ+(z) as in (3.13) is causal and stable, by causality and stability

of Φ̃(z), Φ̃⊥(z), and Q(z). Employing the identity (3.10) yields Φ+(z)Φ(z) = IM . Thus

Φ+(z) is indeed a causal and stable left inverse of Φ(z). Conversely consider any causal

and stable left inverse Φ+(z) of Φ(z), and set Q(z) = Φ+(z)Φ⊥(z). Then Q(z) is causal

and stable, and

[
Φ̃(z) + Q(z)Φ̃⊥(z)

]
Φ⊥(z) = Q(z) = Φ+(z)Φ⊥(z).

The above implies that Φ+(z) =
[
Φ̃(z) + Q(z)Φ̃⊥(z)

]
+ Φ(z)Φ̃(z) for some causal and

stable Φ(z). But Φ+(z)Φ(z) = IM , which concludes that Φ(z) = 0, and thus Φ+(z) must

be of the form in (3.13) for some causal and stable Q(z).

The constrained optimization formulated as in the previous section is now reduced to

unconstrained optimization which is equivalent to minimization of the mean square error J

as in (2.32) with G(z) = Φ̃(z)+Q(z)Φ̃⊥(z) over all possible causal and stable Q(z). While

such an optimization procedure of searching for Q(z) can be carried out theoretically,

numerical algorithms for design of optimal G(z) can be very time consuming, and ill-

conditioned. The main result in this chapter shows that the optimal channel equalizer is
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actually a modified Kalman filter as demonstrated next. Hence numerically reliable and

efficient algorithms can be used for design of optimal channel equalizers [4].

Theorem 3.2 Suppose that the PR condition (3.2) as in Theorem 3.1 holds for some

positive integers r and q0, with 0 ≤ r < M . Let Φ(z) be as in (3.3) having a realization

in (3.4) which satisfies (3.5). Then the following algebraic Riccati equation (ARE)

X − A0XA∗
0 + (A0XC∗

0 + BS0)R̃
−1(A0XC∗

0 + BS0)
∗ −BR0B

∗ = 0 (3.14)

has a unique positive (semi)definite solution X, where R̃ := D∗
0⊥RvD0⊥ + C0XC∗

0 , and

A0 = A−BD+
0 C, C0 = D∗

0⊥C, S0 = −D+
0 RvD0⊥, R0 = D+

0 Rv(D
+
0 )∗.

Let X be the unique positive (semi)definite solution to the ARE (3.14). Then G(z) = Φ̃(z)

as in (3.8) with

K = Kopt := −AXC∗D0⊥R̃−1, Θ = Θopt := (S0 −D+
0 CXC∗

0)R̃−1, (3.15)

is the blocked receiver filterbank achieving optimal channel equalization, where D+ = D+
0 +

ΘoptD
+
⊥ and D+

⊥ = D∗
0⊥ with D0⊥ and D+

0 as in (3.6) and (3.11), respectively.

Proof: It is noted that the ARE (3.14) is associated with the Kalman filter for the

state estimation problem of the discrete-time state-space model (see Section 5.4 of [4]):

x(t + 1) = A0x(t) + Bµ(t), y(t) = C0x(t) + ν(t), (3.16)

where µ(t) and ν(t) are two stationary and white noise processes with covariance

E








µ(t)

ν(t)




[
µ∗(t) ν∗(t)

]




=




R0 S0

S∗0 D∗
0⊥RvD0⊥




=




D+
0

−D∗
0⊥


 Rv

[
(D+

0 )∗ −D0⊥

]
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which is positive semidefinite, by R0 = D+
0 Rv(D

+
0 )∗ and S0 = −D+

0 RvD0⊥. Since A is

asymptotically stable, and the strict minimum phase assumption implies the existence of

the state estimation gain L such that A0 + LC0 is asymptotically stable, the ARE has a

unique positive (semi)definite solution X [4]. Now with K = Kopt and Θ = Θopt as in

(3.15),

AK = A−BD+C + KoptD
+
⊥C = A−BD+

0 C + (Kopt −BΘopt)D
∗
0⊥C = A0 + LC0,

BK = BD+ −KoptD
+
⊥ = BD+

0 − (Kopt −BΘopt)D
∗
0⊥ = BD+

0 − LD∗
0⊥,

where L = Kopt−BΘopt, and (3.11) and (3.12) are used. It follows that AK is asymptot-

ically stable, and the following Lyapunov equation

Y − AKY A∗
K = BKRvB

∗
K , (3.17)

has a unique solution. Substituting the expressions of AK and BK into (3.17) yields

Y − A0Y A∗
0 − LR̃L∗ − L(A0Y C∗

0 + BS0)
∗ − (A0Y C∗

0 + BS0)L
∗ −BR0B

∗ = 0. (3.18)

It is noted that by L = Kopt −BΘopt with Kopt and Θopt as in (3.15), we have

L = −
(
AXC∗D0⊥ + B(S0 −D+

0 CXC∗
0)

)
R̃−1 = −(A0XC∗

0 + BS0)R̃
−1. (3.19)

Substituting the above L into (3.18) concludes that the Lyapunov equation (3.17) is

identical to the ARE (3.14), by setting Y = X. To show the optimality of K = Kopt and

Θopt in (3.15), we substitute G(z) = Φ+(z) as in (3.13) into the performance index (2.32),

yielding

J = trace

{
1

j2π

∮

|z|=1

[
Φ̃(z)RvΦ̃

∗(z̄−1) + Q(z)Φ̃⊥(z)RvΦ̃
∗
⊥(z̄−1)Q∗(z̄−1)

] dz

z

}
+ 2J1,

(3.20)
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where J1 is the contour integral of z−1Q(z)Φ̃⊥(z)RvΦ̃
∗(z̄−1) on the unit circle, or

J1 = trace

{
1

j2π

∮

|z|=1
Q(z)Φ̃⊥(z)RvΦ̃

∗(z̄−1)
dz

z

}
. (3.21)

Assume that AK has no zero eigenvalues2. Then with Φ̃(z) as in (3.8),

Φ̃∗(z̄−1) =
[
(IM + B∗

KA∗−1
K C∗) + B∗

KA∗−1
K (zIN − A∗−1

K )−1A∗−1
K C∗] (D+)∗

=




A∗−1
K A∗−1

K C∗

B∗
KA∗−1

K IM + B∗
KA∗−1

K C∗


 (D+)∗.

Hence we have a composite state-space realization:

Φ̃⊥(z)RvΦ̃
∗(z̄−1) = D + C(zI2N − A)−1B =




A B

C D


 ,

where, by D⊥ = D0⊥,

A =




AK BKRvB
∗
KA∗−1

K

0 A∗−1
K


 , B =




BKRv + BKRvB
∗
KA∗−1

K C∗

A∗−1
K C∗


 (D+)∗, (3.22)

C = D∗
0⊥

[
−C RvB

∗
KA∗−1

K

]
, D = D∗

0⊥Rv(IP + B∗
KA∗−1C∗)(D+)∗. (3.23)

Since similarity transform does not alter transfer function matrices, we have

Φ̃⊥(z)RvΦ̃
∗(z̄−1) =




A B

C D


 =




S−1AS S−1B

CS D


 , S =




IN X

0 IN


 ,

where X is the unique positive definite solution to the ARE in (3.14). Straightforward

calculation yields, by (3.17) and X = Y ,

S−1AS =




AK (AKXA∗
K + BKB∗

K −X)A∗−1
K

0 A∗−1
K


 =




AK 0

0 A∗−1
K


 ,

CS = D∗
0⊥

[
−C RvB

∗
KA∗−1

K − CX

]
. (3.24)

2If AK has zero eigenvalues, then AK can be replaced by Aε
K = εIN + AK with ε a complex number

sufficiently close to zero. Limit ε → 0 can be taken at the end of the proof. See [16] (page 214).
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It is claimed that D∗
0⊥(RvB

∗
K − CXA∗

K)A∗−1
K = 0, which can be verified by noting that

D∗
0⊥(RvB

∗
K − CXA∗

K) = D∗
0⊥

(
Rv(BD0 − LD∗

0⊥)∗ − CX(A0 + LD∗
0⊥C)∗

)

= D∗
0⊥Rv(BD0)

∗ −D∗
0⊥RvD0⊥L∗ −D∗

0⊥CXA∗
0 −D∗

0⊥CXC∗D0⊥L∗

= D∗
0⊥RvD

∗
0B

∗ −D∗
0⊥CXA∗

0 −D∗
0⊥(Rv + CXC∗)D0⊥L∗

= −(A0XC∗
0 + BS0)

∗ − R̃L∗ = 0

in light of (3.19), and X = Y . This implies that CS = D∗
0⊥

[
−C 0

]
. Moreover the

above equality implies that D+
0⊥RvB

∗
K = D∗

0⊥CXA∗
K , and thus D as in (1.11) is given by

D = D∗
0⊥Rv(D

+)∗ + D∗
0⊥RvB

∗
KA∗−1

K C∗(D+)∗

= D∗
0⊥Rv(D

+)∗ + D∗
0⊥CXC∗(D+)∗

=
(
D∗

0⊥Rv + D∗
0⊥CXC∗) (

D+
0 + ΘD∗

0⊥
)∗

=
(
D+

0 RvD0⊥ + D+
0 CXC∗D0⊥

)∗
+

(
D∗

0⊥RvD0⊥ + D∗
0⊥CXC∗D∗

0⊥
)

Θ∗

= −
(
S0 −D+

0 CXC∗
0

)∗
+ R̃Θ∗ = 0

by the expression of Θ as in (3.15). We can now conclude that

Φ̃⊥(z)RvΦ̃
∗(z̄−1) = −D∗

0⊥C(zIN − AK)−1B0

for some B0 (which can be obtained from S−1B, but is not important here). Thus the

integrand Q(z)Φ̃⊥(z)RvΦ̃
∗(z̄−1) of J1 as in (3.21) is strictly causal, and stable. That is,

Q(z)Φ̃⊥(z)RvΦ̃
∗(z̄−1) =

∞∑

k=1

wkz
−k,

∞∑

k=1

trace {wkw
∗
k} < ∞.

It follows from the Cauchy integral theorem that J1 = 0, and thus by (3.20),

J ≥ trace

{
1

j2π

∮

|z|=1
Φ̃(z)RvΦ̃

∗(z̄−1)
dz

z

}
=: Jopt, (3.25)
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for any causal and stable Q(z), concluding the optimality of G(z) = Φ̃(z), associated with

K = Kopt and Θopt as in (3.15). The proof is now complete.

The next result gives the expression of the optimal value of the mean square error in

(2.32).

Corollary 3.2 Let X be the unique positive definite solution for (3.17), and Kopt and

Θopt be given as in (3.15). Then the least mean square error Jopt as defined in (3.25) is

given by

Jopt := trace
{(

D+
0 + ΘoptD

+
0⊥

) (
Rv + CXC∗) (

D+
0 + ΘoptD

+
0⊥

)∗}
. (3.26)

Proof: We use a similar derivation as in [27]. By the fact that Y = X, (3.17) is

equivalent to

(zIN − AK)X(z−1IN − A∗
K) + AKX(z−1IN − A∗

K) + (zIN − AK)XA∗
K = BKRvB

∗
K .

Multiplying C(zIN − AK)−1 from left, and (z−1IN − A∗
K)−1C∗ from right yield

CXC∗ + C(zIN − AK)−1AKXC∗ + CXA∗
K(z−1IN − A∗

K)−1C∗

= C(zIN − AK)−1BKRvB
∗
K(z−1IN − A∗

K)−1C∗.

It follows from the above expression that

Φ̃(z)RvΦ̃
∗(z̄−1) =

= D+
[
IP − C(zIN − AK)−1BK

]
Rv

[
IP −B∗

K(z−1IN − A∗
K)−1C∗] (D+)∗

= D+
(
Rv + CXC∗) (D+)∗ + D+C(zIN − AK)−1(AKXC∗ −BKRv)(D

+)∗

+ D+(CXA∗
K −RvB

∗
K)(z−1IN − A∗

K)−1(D+C)∗
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Taking contour integral, and noting that AK is asymptotically stable lead to

1

j2π

∮

|z|=1
Φ̃(z)RvΦ̃

∗(z̄−1)
dz

z
= D+(Rv + CXC∗)(D+)∗

from which the expression of (3.26) follows by using D+ as in (3.11), and Θopt as in (3.15).

We would like to comment that if the realization of Φ(z) is minimal, then the solution

X to ARE (3.14) is positive definite. But if the realization of Φ(z) is not minimal, then

the solution X to ARE (3.14) can be positive semidefinite. But minimal realization of

Φ(z) is not required. Rather only asymptotic stability of A and the strict minimum phase

condition (3.5) need be satisfied for the realization of Φ(z). We would also like to comment

that the proof of Theorem 3.2 shows that the optimal state estimation gain associated

with ARE (3.14) is L = −(A0XC∗
0 + BS0)R̃

−1 as in (3.19), not Kopt as in (3.15). Hence

the optimal blocked receiver filterbank G(z) is not exactly the optimal state estimator,

or the Kalman filter, due to the free matrix Θ involved in D+. Hence we call the optimal

receiver filterbank G(z) (associated with Kopt and Θopt as in (3.15)) a modified Kalman

filter. It is important to note that Theorem 3.2 has implications to time-varying channels

as well, which will be investigated in the next chapter.

We summarize the proposed design algorithm for the optimal receiver filterbank, as-

suming that the channel and the transmitter filterbank are known:

• Design Algorithm for Optimal Channel Equalizers:

• Step 1: Find minimal realizations for the blocked transfer function matrices: H(z)

and F (z).
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• Step 2: Search for integers q0 ≥ 0 and r with 0 ≤ r < M such that the strict

minimum phase condition in Theorem 3.1 is true.

• Step 3: Find a realization for Φ(z) in (3.3) satisfying (3.5). If q0 = 0, then (3.33)

can be used.

• Step 4: Solve ARE (3.14), and set K = Kopt and Θopt as in (3.15), and set G = Φ̃(z)

as in (3.8).

• Step 5: Set Gk(z) =
M−1∑

i=0

z−iGki(z
M) for 0 ≤ k < P , where Gki(z) is the (i-k)th

element of G(z), obtained in Step 4.

It is noted that if H(z) and F (z) have minimal realization, then the strict minimum

phase condition (3.5) holds. Thus, if Step 3 fails, then the PR condition does not hold.

New values of P and M , or/and new transmitter filters need be designed. The procedures

in the previous section can be used to obtain a realization for Φ(z).

3.4 State-space Realizations for FIR/IIR Channels

State-space has become an increasingly important computational tool, and is instrumental

in Kalman filtering theory. Our results in this chapter are also built upon the state-space

method. In this section we illustrate how to find a simple state-space realization of Φ(z)

as in (3.3), given FIR or IIR channel and transmitter filters.

If the channel H(z) is an FIR filter of the form:

H(z) = h0 + h1z
−1 + h2z

−2 + · · ·+ hLz−L, hL 6= 0. (3.27)
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Then a simple realization (a variation of the Brunovsky form) can be used for H(z) =


Ah Bh

Ch Dh


:

Ah =




0 0 · · · · · · 0

1 0
. . . . . .

...

0 1
. . . . . .

...

...
. . . . . . . . . 0

0 · · · 0 1 0




, Bh =




1

0

...

...

0




,

Ch =
[

h1 h2 · · · hn

]
, Dh = h0. (3.28)

The condition hL 6= 0 ensures that the realization is minimal. If the channel has an IIR

form (we assume that the numerator and denominator polynomials are coprime, which

will also ensure the minimal realization):

H(z) = h0 +
b1z

L−1 + b2z
L−2 + b2z

L−2 + · · ·+ bL

zL + a1zL−1 + · · ·+ aL

, (3.29)

then we have the following simple realization (a variation of the Brunovsky form):

Ah =




−a1 −a2 · · · · · · −aL

1 0 · · · · · · 0

0 1
. . . . . .

...

...
. . . . . . . . .

...

0 · · · 0 1 0




, Bh =




1

0

...

...

0




, (3.30)

Ch =
[

b1 b2 · · · bL

]
, Dh = h0.

With the state-space realization for H(z) available, and F (z) =
[

IM 0

]T

, the
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blocked transfer function H(z)F (z) for the case P ≥ L > M = 1 is now given by

H(z)F (z) =




H0(z)

H1(z)

H2(z)

...

HP−1(z)




=




Dh

ChBh

ChAhBh

...

ChA
P−2
h Bh




+




Ch

ChAh

ChA
2
h

...

ChA
P−1
h




AP−1
h (zIL − AP

h )−1Bh

= Dh + Ch(zIL − Ah)
−1Bh. (3.31)

It can be verified by straightforward calculation that for the FIR channel as in (3.27),

Ah =




0P×(L−P ) 0P×P

IL−P 0(L−P )×P


 , Bh =




0(P−1)×1

eL−P


 , eL−P =




1

0(L−P−2)×1


 ,

Ch =




h1 h2 · · · hL−P+1 hL−P+2 · · · hL

h2 h3 · · · hL−P+2 hL−P+3 · · · 0

...
... · · · ...

... · · · ...

...
... · · · ... hL · · · ...

hP hP+1 · · · hL 0 · · · 0




, Dh =




h0

h1

h2

...

hP−1




,

where 0α×β is the zero matrix of size α× β. For the IIR channel as in (3.29), we have

Ah =




Φ

E0


 , Φ =




φ1,1 φ1,2 · · · φ1,L

...
... · · · ...

φP−1,1 φP−1,2 · · · φP−1,L




, E0 =
[

IL−P 0(L−P )×P

]
,

Bh =




φ2,1

...

φP−1,1

eL−P




, Ch =




γ1,1 γ1,2 · · · γ1,L

γ2,1 γ2,2 · · · γ2,L

...
... · · · ...

γP,1 γP,2 · · · γP,L




, Dh =




ψ1

ψ2

...

ψP




,

where by taking a0 = 1, γ1,i = bi for 1 ≤ i ≤ L, and the convention ak = 0 for k > L,
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{φi,l}, {ψi}, and {γi,l} are given recursively by

φP−i,l = −
i∑

k=1

akφP−i+k,l − ai+l, i = 1, 2, · · · , P − 1, l = 1, 2, · · · , L,

γi,l =
i−1∑

k=1

bi−kφP−k+l,l + bi+l−1, i = 1, · · · , P − 1, l = 1, 2, · · · , L,

ψ1 = h0, ψi =
i−1∑

k=1

bi−kφP−k+2,1, i = 2, 3, · · · , P.

For the case P > M > 1, we have

H(z) =




H0(z) z−1HP−1(z) · · · z−1H1(z)

H1(z) H0(z) · · · z−1H2(z)

...

HP−1(z) HP−2(z) · · · H0(z)




=: Dh + Ch(zILP −Ah)
−1Bh, (3.32)

where Ah =diag (Ah), Bh =diag (Bh) with P repeated blocks, and

Ch =




ChA
P−1
h ChA

P−2
h · · · Ch

ChA
P
h ChA

P−1
h · · · ChAh

...
...

. . .
...

ChA
2(P−1)
h ChA

2P−1
h · · · ChA

P−1
h




,

Dh =




Dh 0 · · · 0

ChBh Dh · · · 0

...
...

. . .
...

ChA
P−2
h Bh ChA

P−1
h Bh · · · Dh




.

Assume that the transmitter filters are given, and integers q0 ≥ 0 and 0 ≤ r < M

exist such that

Φ(z) = zq0H(z)F (z)




0 zIM−r

Ir 0


 = D + C(zIN − A)−1B =




A B

C D


 , D 6= 0.
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Suppose that a realization of F (z) = Df + Cf (zI − Af )
−1Bf can be obtained with the

similar procedure as earlier. If DDf 6= 0, then we have

Φ(z) =
[
D + C(zIL − A)−1B

] [
Df + Cf (zI − Af )

−1Bf

]
=




A BCf BDf

0 Af Bf

C DCf DDf




. (3.33)

If DDf = 0, then a smallest integer q0 > 0 exists such that the column vector

D =
[

C DCf

]



A BCf

0 Af




q0−1 


BDf

Bf


 6= 0. (3.34)

In this case, the remaining three matrices (A,B, C) of Φ(z) are given by

A =




A BCf

0 Af


 , B =




BDf

Bf


 , C =

[
C DCf

]



A BCf

0 Af




q0

. (3.35)

3.5 BER and An Illustrative Example

A commonly used performance measurement is bit error rate (BER) probability, rather

than the MSE. To find an expression for the BER at the receiver, let J be define as

J =
1

j2π

∮

|z|=1
G(z)RvG

∗(z̄−1)
dz

z
.

Thus there holds

J(G(z) = Φ+
opt(z)) = trace {J }|G=Φ+

opt
. (3.36)

The expression of J for the optimal channel equalizer is as in (3.26) given by

J = D+
opt (Rvv + CXC∗)

(
D+

opt

)∗
, (3.37)

where D+
opt =

(
D+

0 + ΘoptD+
0⊥

)
.
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With S(z) as in (2.22), the MSE value Ji, the ith diagonal element of J , is given by

Ji :=
1

j2π

∮

|z|=1
Gi(z)RvG

∗
i (z̄

−1)
dz

z
(3.38)

where Gi(z) is the ith row of the blocked receivers filters G(z). Thus, the MSE for the

ith polyphase component/user received data Si(z) is Ji, and the average error probability

for S(z) is defined as

Pe :=
1

M

M−1∑

i=0

P (i)
e (3.39)

where P (i)
e denotes the error probability of the ith symbol stream. For BPSK constella-

tions, the error probability of the ith symbol in the case of additive Gaussian noise (AGN)

is given by

P (i)
e =

1

2
erfc

(
1√
Ji

)
. (3.40)

In the following, we consider an example studied in [57].

• An Illustrative Example : The channel is given by

H(z) =
L∑

i=0

hiz
−i = 1− 0.3z−1 + 0.5z−2 − 0.4z−3 + 0.1z−4 − 0.02z−5 + 0.3z−6 − 0.1z−7

with L = 7. We choose P = 4 > M = 3, which are roughly one-tenth of P and M values

in [57], respectively. We set initially F (z) =
[

IM 0

]T

, which yields:

H(z)F (z) =
2∑

i=0

Γiz
−i, Γi =




h(iP ) · · · h(iP − P + 2)

h(iP + 1)
. . .

...

...
. . .

...

h(iP + P − 1) · · · h(iP + 1)




.
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A simple realization is

H(z)F (z) =




0M×M 0M×M IM

IM 0M×M 0M×M

H1 H2 H0




.

Computing spectral factorization:

F ∗(z̄−1)H∗(z̄−1)H(z)F (z) = Ω∗(z̄−1)Ω(z),

and setting F new(z) =
[

IM 0

]T

Ω−1(z) show that (b) of (3.1) is satisfied with F new(z)

in place of F (z). The transmitter filters {Fk(z)}2
p=0 can be easily computed based on

their polyphase components in F new(z). To design optimal channel equalizers, we set

Φ(z) = H(z)F new(z), corresponding to q0 = 0, r = M , and K = 1 as in (3.3). We

then use Theorem 3.2 to compute the optimal left inverse G(z). Because the stabilizing

solution to ARE (3.14) exists such that AKopt = A0−KoptC0 is asymptotically stable, the

strict minimum phase condition in (3.5) holds. The optimal receiver filters {Gm(z)}3
m=0

are obtained subsequently. The MSE J in (2.32) corresponding to the optimal receivers

is Jopt = 3.188 using (3.26) for the case with noise variance σv = 1 and K = 1. We would

like to emphasize that while our number of channels is roughly one tenth of those used

in [57], the corresponding mean square error is also approximately one tenth (≈ 1/10) of

that in [57] for the same channel.

The average frequency responses of the transmitter and receiver filters are plotted

using

|F(f)| := 1

M

M−1∑

m=0

|Fm(ej2fπ)|, |G(f)| := 1

M

P−1∑

p=0

|Gp(e
j2fπ)|.

See (a) of Figure 3.1 for |F(f)| (solid line), and (b) of Figure 3.1 for |G(f)| (solid line),
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versus the channel frequency response (dashed line), all normalized with respect to their

respective maximum. It is noted that although we have much fewer filters (approximately

one tenth) compared to [57], the transmitter filters have similar average frequency re-

sponses. Indeed the transmitter filterbank tends to pre-equalize the channel, to transmit

more power at frequencies where the channel attenuation is higher, or vice-versa. But

the average frequency responses of the receiver filterbank are much more flat than that

in [57].
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(a) |F(f) versus |H(ej2fπ)| (b) |G(f)| versus |H(ej2fπ)|

Figure 3.1: Average frequency responses of transmitter and receiver filterbanks versus
channel

To compare the BER, we compute the matrix J as in (3.36). The diagonal elements

of J are then used to compute the BER probability for the BPSK case as in (3.39) and

(3.40). we have used Theorem 3.2 to compute the optimal left inverse G(z) with M = 3

and P = 8, with BER shown in Figure 3.2 as a function of Eb/N0 for both our design

and the design in [57], where Eb/N0 varies from 0.8264 to 100. It is interesting to observe

that the two performance curves coincide with each other, with almost no difference in

the BER performance. However we would like to emphasize that we have a much smaller
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overall MSE J which corresponding to the optimal receivers, where Jopt = 3 using (3.26)

for the case with noise variance σv = 1 and K = 1. The corresponding mean square error

is less than one tenth (< 1/10) of that in [57] for the same channel, because we use a

much smaller number of transmitter and receiver filters than those used in [57].
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Figure 3.2: Bit error rate BER versus Eb/N0 dB



Chapter 4

Optimal Equalization for
Time-varying Channels with
Non-stationary Noises

4.1 Introduction

While the previous chapter has focused on the single user filterbank transceivers in Figure

2.3, this chapter considers multiuser data networks, including DSL, FDMA, and CDMA

communication systems. We will consider the case where the estimated channel is avail-

able, which is time-varying, due to the mobile and ubiquitous nature of cellular phones,

and applications of the filterbank transceivers to wireless data communications. We will

study design of optimal receivers that achieve not only PR or zero-forcing, but also MMSE

for possible non-stationary white noise processes, among all possible linear and time-

varying filters of arbitrary orders. This is contrast to the existing results in the present

literature. We will show that for redundant filterbank transceivers, the zero-forcing re-

ceivers are equivalent to causal and stable left inverses of some “tall” matrix of linear

dynamic systems, consisting of the channel and transmitters. Such left inverses are not

unique. Any zero-forcing receiver filterbank accomplishes the goal of channel equaliza-

76
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tion, and eliminates completely ISI. We will first parameterize all zero-forcing channel

equalizers in an affine form, and then seek one of them to minimize the MSE caused by

possible non-stationary white noises corrupted at the receivers, thereby converting the

constrained optimization into unconstrained optimization for receivers design. It will be

shown that the design of optimal channel equalizers is equivalent to the design of optimal

state estimators for some augmented system subject to the same noise processes. Hence

the celebrated Kalman filtering can again be used successfully to design the optimal detec-

tors among all channel equalizers, which are truly optimal over all linear and time-varying

receiver filters of arbitrary order. This chapter is also a continuation of our previous work

in Chapter 3 on optimal channel equalization for filterbank models developed in [25, 57],

in which channels are time-invariant, and the noise process is white and WSS. However the

transfer function approach used in the previous chapter does not apply to time-varying

channels or/and non-stationary white noise processes. Hence the solution method and

the proofs of our main results in this chapter are new, which enable us to obtain more

general results on optimal channel equalization under more practical constraints.

This chapter is organized as follows. We begin with the introduction section. Then

in Section 4.2, all receiver filterbanks achieving PR or zero-forcing will be parameterized

for time-varying channels in an affine form, which generalizes the corresponding result

in the previous chapter. In Section 4.3, optimal channel equalization will be studied for

time-varying channels and non-stationary white noise processes. It will be shown that the

optimal channel equalizer is a modified Kalman filter, similar to the previous chapter, but

the algebraic Riccati equation (ARE) in the previous chapter is replaced by the difference
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Riccati equation (DRE), assuming that the covariance of the non-stationary white noise

process is known for each time instant. Section 4.4 contains analysis of the computational

complexity, and BER, associated with optimal channel equalization. An example is used

to illustrate the proposed optimal channel equalizer. The notations in this chapter are

standard, consistent with the previous chapters. New notations will be made clear as we

proceed.

4.2 Parameterization of All Zero-Forcing Receiving

Filters

In this section we focus on the multirate transmultiplexer in Figure 2.11, which is a mul-

tiuser data communication system. Thus the input and output relation (2.9) holds. We

investigate the issue of channel equalization: Given φ(n, k) = h(n, k) ? f(n, k), under

what condition there exists a stable and causal dynamic system, represented by its im-

pulse response g(n, k), such that (2.60) holds? If the existence condition is true, can we

parameterize all channel equalizers? For this reason we assume through out this section

that the noise process is absent, i.e., v(n) ≡ 0. The optimal channel equalization in the

MMSE sense will be investigated in the next section.

We will assume that the composite system with impulse response φ(n, k) is described

by the following state-space model:

x(n + 1) = A(n)x(n) + B(n)s(n), x(0) = 0, (4.1)

y(n) = C(n)x(n) + D(n)s(n),

where s(n) is the vector of M input data stream at time n, y(n) is the blocked output
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as in (2.48) in absence of the noise, and x(n) is the N -dimensional state vector at time

n. Thus A(n) has size N × N , B(n) has size N ×M , C(n) has size P × N , and D(n)

has size P × M for all integer valued time n. Clearly the impulse response φ(n, k) for

the state-space model in (4.1) is a linear map from s(n) to y(n). We are interested

in characterizing all causal and stable left inverses of the linear map φ(n, k), which is

equivalent to the zero-forcing condition (2.60).

Throughout this chapter, exponential stability as in Definition 1.6 is used in place of

stability. For time-invariant systems, exponential stability reduces to ρ(A) < 1. Because

stability of the state-space system (4.1) depends only on A(n), we will say that A(n) is

exponentially stable, if the condition in Definition 1.6 is true.

Remark 4.1 We will assume exponential stability, and moreover

rank [ D(n) ] = M ∀ n. (4.2)

If the condition (4.2) is violated for some n, then there always exists a factorization of

the form

φ(n, k) = φ
0
(n, k)diag(q−`0 , q−`1 , · · · , q−`M−1),

for some positive integers `0, `1, · · · , `M−1, such that the state-space realization of φ
0
(n, k)

has its D(n)-term full column rank. Since the diagonal matrix diag(q−`1 , · · · , q−`M ) adds

only `k delays in transmission from sk(n) to ŝk(n) where 0 ≤ k < M under the zero-forcing

condition, it has no adverse effect on MMSE design. Hence the assumption in (4.2) has

no loss of generality.

Since P > M , D(n) having full column rank implies the existence of D⊥(n) such that



80

Da(n) =
[

D(n) D⊥(n)

]
is square and nonsingular. In particular, D⊥(n) can be chosen

from the minimum rank Cholesky factorization

D⊥(n)D∗
⊥(n) = D0⊥(n)D∗

0⊥(n) := IP −D(n)(D∗(n)D(n))−1D∗(n). (4.3)

It follows that left inverses of D(n) and D⊥(n) exist, denoted by D+(n) and D+
⊥(n),

respectively, and satisfy




D+(n)

D+
⊥(n)




[
D(n) D⊥(n)

]
=




IM 0

0 IP−M


 . (4.4)

Lemma 4.1 Let the state-space realization for φ(n, k) be given as in (4.1) where D(n)

satisfies the condition (4.2). Then a causal and stable g(n, k) exists and satisfies the zero-

forcing condition (2.60), if and only if for any D+(n) and D+
⊥(n) satisfying (4.4), there

exists a state estimation gain L(n) such that

AL(n) = A(n)−B(n)D+(n)C(n) + L(n)D+
⊥(n)C(n) (4.5)

is exponentially stable. Such a state estimator gain L(n) will be called stabilizing.

Proof: If AL(n) is exponentially stable for some L(n), then it is claimed that g(n, k) =

φ+(n, k), described by the state-space model:

x̃(n + 1) = AL(n)x̃(n) + BL(n)y(n), BL(n) = B(n)D+(n)− L(n)D+
⊥(n), (4.6)

ŝ(n) = −D+(n)C(n)x̃(n) + D+(n)y(n), x̃(0) = 0,

is a causal and stable left inverse of φ(n, k), and thus the zero-forcing condition (2.60)

holds. Indeed with the state-space models as in (4.1) and (4.6), the composite system
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from s(n) to ŝ(n) is given by



x(n + 1)

x̃(n + 1)


 =




A(n) 0

BL(n)C(n) AL(n)







x(n)

x̃(n)


 +




B(n)

B(n)


 s(n)

ŝ(n) =
[

D+(n)C(n) −D+(n)C(n)

]



x(n)

x̃(n)


 + s(n)

by BL(n)D(n) = B(n). Applying similarity transformation



xs(n)

x̃s(n)


 =




In 0

−In In







x(n)

x̃(n)




yields



xs(n + 1)

x̃s(n + 1)


 =




A(n) 0

0 AL(n)







xs(n)

x̃s(n)


 +




B(n)

0


 s(n)

ŝ(n) =
[

0 −D+(n)C(n)

]



xs(n)

x̃s(n)


 + s(n)

Hence by the initial condition of x̃(0) = x(0) = 0, we have that x̃s(0) = 0 and x̃s(n) =

0 ∀ n. It follows that ŝ(n) = s(n). Conversely, assume that a stable and causal g(n, k)

exits such that the zero-forcing condition (2.60) is true. Since the state-space model (4.1)

for φ(n, k) has an equivalent form

x(n + 1) = A(n)x(n) + BL(n)d(n), y(n) = C(n)x(n) + d(n), x(0) = 0, (4.7)

for any L(n), and any D+(n) and D+
⊥(n) satisfying (4.4), where d(n) = D(n)s(n), and

BL(n) is as in (4.6),

y(n) = φ(n, k) ? s(n) = φ
1
(n, k) ? d(n)

for some φ
1
(n, k). The existence of stable and causal g(n, k) such that (2.60) holds then

implies that

ŝ(n) = g(n, k) ?
[
φ(n, k) ? s(n)

]
=

[
g(n, k) ? φ

1
(n, k)

]
? d(n) = s(n).
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Because d(n) = D(n)s(n), we have that g(n, k) ? φ
1
(n, k) = D+(n), a left inverse of

D(n), which in turn implies that φ
1
(n, k) as described in (4.7) has a stable and causal

left inverse. Noticing that φ
1
(n, k), described by the state-space model as in (4.7), has

an equal number of inputs and outputs, and the direct transmission from d(n) to y(n) is

identity, we conclude that it has a unique inverse, given by

x(n + 1) = AL(n)x(n) + BL(n)y(n), d(n) = −C(n)x(n) + y(n).

Causality and stability of g(n, k) then concludes that

AL(n) = A(n)−BL(n)C(n) = A(n)−B(n)D+(n)C(n) + L(n)D+
⊥(n)C(n)

is exponentially stable.

For the case of time-invariant models, the equivalent zero-forcing condition in Lemma

4.1 reduces to the strictly minimum phase condition [26]:

rank








zIn − A B

C D








= n + M ∀ |z| ≥ 1. (4.8)

With the existence condition established in Lemma 4.1 for zero-forcing receiving filters,

we consider parameterization of all zero-forcing receiving filters. Let v(n) be of size

(P −M) ∀ n. We define a time-varying system φ⊥(n, k) by the state-space model as

x⊥(n + 1) = A(n)x⊥(n) + BL(n)D⊥(n)v(n), x⊥(0) = 0, (4.9)

w(n) = C(n)x⊥(n) + D⊥(n)v(n)

where BL(n) is the same as in (4.6). It is noted that B(n) = BL(n)D(n) by the expression

of BL(n) in (4.6), and the relation in (4.4). Thus the state-space model for φ⊥(n, k) is
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the same as for φ(n, k) except that D⊥(n) replaces D(n). Hence by Lemma 4.1, a specific

left inverse φ+
⊥(n, k) to φ⊥(n, k) is described by the state-space model:

x̃⊥(n + 1) = AL(n)x̃⊥(n) + BL(n)v(n), x̃(0) = 0, (4.10)

v(n) = −D+
⊥(n)C(n)x̃⊥(n) + D+

⊥(n)w(n).

Let xa(n) = x(n)+x⊥(n) and y
a
(n) = y(n)+w(n) for the state space models in (4.1) and

(4.9). Then it can be verified that the augmented system φ
a
(n, k) =

[
φ(n, k) φ⊥(n, k)

]

is square, and has the state-space model

xa(n + 1) = A(n)xa(n) + BL(n)
[

D(n) D⊥(n)

]



s(n)

v(n)


 , xa(0) = 0, (4.11)

ya(n) = C(n)xa(n) +
[

D(n) D⊥(n)

]



s(n)

v(n)


 .

Lemma 4.2 Consider the state-space model as in (4.1), which satisfies the condition

(4.2), and that there exists a state estimation gain L(n) such that AL(n) as in (4.5)

is exponentially stable. Then for φ
a
(n, k) as in (4.11), there exists a unique φ−1

a
(n, k) =


φ+(n, k)

φ+
⊥(n, k)


, which is a causal and stable inverse for the square augmented system φ

a
(n, k),

and described by the state-space model:

x̃a(n + 1) = AL(n)x̃a(n) + BL(n)ya(n), x̃a(0) = 0, (4.12)



ŝ(n)

v̂(n)


 =



−D+(n)C(n)

−D+
⊥(n)C(n)


 x̃a(n) +




D+(n)

D+
⊥(n)


 ya(n).

That is, for each D+(n), D+
⊥(n) satisfying (4.4), and L(n) stabilizing, there exists a unique

causal and stable inverse φ−1
a

(n, k) for φ
a
(n, k) such that




φ+(n, k)

φ+
⊥(n, k)


 ?

[
φ(n, k) φ⊥(n, k)

]
=




δ(n− k)IM 0

0 δ(n− k)IP−M


 . (4.13)
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Proof: Recall the relation in (4.4). With the state-space models as in (4.11) and (4.12),

the composite system from




s(n)

v(n)


 to




ŝ(n)

v̂(n)


 which is the output of




φ+(n, k)

φ+
⊥(n, k)


, is

given by




xa(n + 1)

x̃a(n + 1)


 =




A(n) 0

BL(n)C(n) AL(n)







xa(n)

x̃a(n)




+




BL(n)D(n) BL(n)D⊥(n)

BL(n)D(n) BL(n)D⊥(n)







s(n)

v(n)


 ,




ŝ(n)

v̂(n)


 =




D+(n)C(n) −D+(n)C(n)

D+
⊥(n)C(n) −D+

⊥(n)C(n)







xa(n)

x̃a(n)


 +




s(n)

v(n)


 .

Applying the similarity transformation




xas(n)

x̃as(n)


 =




In 0

−In In







xa(n)

x̃a(n)


 yields




xas(n + 1)

x̃as(n + 1)


 =




A(n) 0

0 AL(n)







xas(n)

x̃as(n)




+




BL(n)D(n) BL(n)D⊥(n)

0 0







s(n)

v(n)


 ,




ŝ(n)

v̂(n)


 =




0 −D+(n)C(n)

0 −D+
⊥(n)C(n)







xas(n)

x̃as(n)


 +




s(n)

v(n)


 .

Hence by the initial condition of x̃a(0) = xa(0) = 0, we have that x̃as(0) = 0 and

x̃as(n) = 0 ∀ n. It follows that




ŝ(n)

v̂(n)


 =




s(n)

v(n)


.

It is interesting to note that (4.13) is the dynamic version to (4.4), and φ+(n, k) as

in (4.6) involves state estimation gain L(n) which is stabilizing. However the left inverse

system φ+(n, k) does not have the form of state estimator. Thus Kalman filtering can

not be applied directly. Moreover, the left inverse D+(n) is not unique. Indeed, all left
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inverses of D(n) are given by

D+(n) = D+
0 (n) + Θ(n)D+

0⊥(n), D+
0 (n) := (D∗(n)D(n))−1D∗(n), (4.14)

where Θ(n) of size M × (P −M) is a free matrix, and D0⊥ is as in (4.3). Thus the left

inverse φ+(n, k) as in (4.6) involves two free parameters, which is beyond the Kalman

filter. Furthermore not all left inverses of φ(n, k) are in the form of φ+(n, k) as described

in (4.6), which poses the difficulty in design of optimal channel equalizers in the next

section. So we will first parameterize all causal and stable left inverses and then search

for the optimal one in the next section.

It is noted that with D0⊥(n) defined as in (4.3), D+
0⊥(n) = D∗

0⊥(n). For any left inverse

D+(n) as in (4.14), we can choose

D⊥(n) = −D(n)Θ(n) + D0⊥(n), D+
⊥(n) = D+

0⊥(n) = D∗
0⊥(n), (4.15)

so that the identity (4.4) still holds true. The next lemma gives parameterization of all

causal and stable left inverses of φ(n, k) in an affine form, which satisfy the zero-forcing

condition (2.60).

Theorem 4.1 Under the same hypotheses as in Lemma 4.2, the set of all causal and

stable left inverses of φ(n, k) is given by

Φ+ :=
{
φ+(n, k) + γ(n, k) ? φ+

⊥(n, k), γ(n, k) is causal and stable
}

, (4.16)

where φ+(n, k), and φ+
⊥(n, k) are described by the state-space models (4.6), and (4.10),

respectively.
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Proof: It is noted that any φinv(n, k) ∈ Φ+ is causal and stable, by causality and

stability of φ̃(n, k), φ̃⊥(n, k), and γ(n, k). Employing the identity (4.13) yields φinv(n, k)?

φ(n, k) = δ(n− k)IM . Thus any φinv(n, k) ∈ Φ+ is indeed a causal and stable left inverse

of φ(n, k). Conversely consider any causal and stable left inverse φ̃
+
(n, k). Then with

φinv(n, k) ∈ Φ+,

φinv(n, k) ?
[

φ(n, k) φ⊥(n, k)

]
=

[
φ+(n, k) + γ(n, k) ? φ+

⊥(n, k)
]
?

[
φ(n, k) φ⊥(n, k)

]

=
[

δ(n− k)IM γ(n, k)

]
,

φ̃
+
(n, k) ?

[
φ(n, k) φ⊥(n, k)

]
=

[
δ(n− k)IM φ+(n, k) ? φ⊥(n, k)

]
.

Thus with γ(n, k) = φ+(n, k) ? φ⊥(n, k) which is causal and stable, φ̃
+
(n, k) is indeed in

Φ+, by the fact that φ
a
(n, k) =

[
φ(n, k) φ⊥(n, k)

]
is square, and has a unique causal

and stable inverse.

Theorem 4.1 is the time-varying version for the parameterization of all stable left

inverses in [26] associated with the time-invariant systems. It is instrumental to obtaining

optimal channel equalization filterbanks transceiver models, which will be developed in

the next section.

4.3 MMSE Channel Equalization

In this section, we study design of the receiving filterbank g(n, k) such that it not only

achieves the zero-forcing condition (2.60), but also minimizes the MSE J(g), as defined

in (2.59). If the distorted channel, and the transmitter filters are all time-invariant,

and the contaminating noise is WSS and white, this problem was solved in the previous
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chapter, where it is shown that the MMSE receiving filterbank satisfying the zero-forcing

condition is a modified Kalman filter, which is optimal among all linear and time-invariant

filterbanks. However the transfer function approach used in [26] is not applicable to the

time-varying channels/transmitter-filters, or/and non-stationary white noises. Hence a

different approach is adopted, keeping in mind that the modified Kalman filter obtained

in [26] is the key ingredient.

With the presence of the contaminating noise at the output of the channel, the com-

posite system φ(n, k) as in (4.1) is modified into

x(n + 1) = A(n)x(n) + B(n)s(n), x(0) = 0, (4.17)

y(n) = C(n)x(n) + D(n)s(n) + v(n).

Our objective is to seek g(n, k), among all the zero-forcing receiver filterbanks parameter-

ized in Theorem 4.1, which minimizes the MSE J(g). We assume that the noise process

has zero mean, with known covariance for all n:

E[v(n)] = 0, E [v(n)v∗(k)] = Rv(n)δ(n− k) = ψ(n)ψ∗(n)δ(n− k), (4.18)

where ψ(n) has a minimum column rank, chosen from the minimum rank Cholesky factor.

Under the zero-forcing condition, g(n, k) ∈ Φ+, by Theorem 4.1. Consequently the symbol

detection error at the output of the receiving filterbank is

e(n) = ŝ(n)− s(n) = g(n, k) ? v(n), g(n, k) ∈ Φ+,

in light of (2.9), and Theorem 4.1. Thus the MSE, or the variance of the symbol detection

error to be minimized is

J(g ∈ Φ+)(n) = trace
{
E

[(
g(n, k) ? v(n)

) (
g(n, k) ? v(n)

)∗]}
(4.19)
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= trace





n∑

k=−∞
g(n, k)Rv(k)g∗(n, k)



 .

Theorem 4.2 Suppose that the hypotheses in Lemma 4.2 hold. Let g(n, k) = φ+
opt

(n, k) ∈

Φ+ be the optimal receiver filterbank to be designed with Φ+ parameterized in Theorem

4.1. That is,

J(g = φ+
opt

) = trace





n∑

k=−∞

[
φ+

opt
(n, k)Rv(k)

(
φ+

opt
(n, k)

)∗]




= inf
g∈Φ+

trace





n∑

k=−∞
g(n, k)Rv(k)g∗(n, k)



 .

Then the optimal receiver filterbank g(n, k) = φ+
opt

(n, k) ∈ Φ+ which minimizes the MSE

is equivalent to the optimal state estimator for the process



xK(n + 1)

yK(n)


 =




A(n) B(n)

C(n) D(n)







xK(n)

v(n)


 (4.20)

where v(n) is the same as in (4.17) and

A(n) =




A0(n) 0

−D+
0 (n)C(n) 0


 , B(n) =




B(n)D+
0 (n)

D+
0 (n)


 ,

C(n) =
[

D∗
0⊥C(n) 0

]
, D(n) = −D∗

0⊥(n), (4.21)

and A0(n) = A(n)−B(n)D+
0 (n)C(n). The state estimator is schematically illustrated in

Figure 4.1.

Proof: Let g(n, k) ∈ Φ+. Then by (4.16),

g(n, k) = φ+(n, k) + γ(n, k) ? φ+
⊥(n, k) =

[
δ(n− k)IM γ(n, k)

]
? φ−1

a (n, k),

φ−1
a

(n, k) =




φ+(n, k)

φ+
⊥(n, k)


 ,
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±°
²¯
+




A(n) B(n)

C(n) D(n)




State estimator

η(t) xK(t)

−x̂K(t)

xg(t)

yK(t)

- - -

6

?

Figure 4.1: State estimator

which has y(n) as the input, and ŝ(n) as the output (cf. Figure 2.12). In light of the state-

space model for φ−1
a

(n, k) as in (4.12), we have that the above g(n, k) can be described

by the following state-space model (recall that AL(n) is exponentially stable, by the

hypotheses):

xg(n + 1) = AL(n)xg(n) + BL(n)v(n), (4.22)

ŝ(n) = −
[
(D+

0 (n) + χ(n, k) ? D+
0⊥(n))C(n)

]
xg(n)

+
[
D+

0 (n) + χ(n, k) ? D+
0⊥(n)

]
v(n),

with χ(n, k) = Θ(n) + γ(n, k), where the expression of D+(n) as in (4.14) is used. That

is, we may extend the left inverse of D(n) to include the dynamics γ(n, k) which results

in a more general left inverse D+(n) = D+
0 (n) + χ(n, k) ? D+

0⊥(n). It follows that the

state-space model of g(n, k) ∈ Φ+ as in (4.22) has the same form as the state-space model

for φ+(n, k) as in (4.6). Since J(g) as in (4.19) does not change with g(n, k) replaced

by g̃(n, k) = q−1 ? g(n, k), where q−1 is the unit delay operator, we have an equivalent

minimization problem for J(g̃) where g̃(n, k) = q−1?g(n, k) is described by the state-space
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model

x̃g(n + 1) :=




xg(n + 1)

ŝ(n)




=




AL(n) 0

−D+(n)C(n) 0


 x̃g(n) +




BL(n)

D+(n)


 v(n), (4.23)

s̃(n) = ŝ(n− 1) = C1x̃g(n), C1 =
[

0 IM

]
,

by the state-space model of g(n, k) as in (4.22), where D+(n) = D+
0 (n)+χ(n, k)?D+

0⊥(n),

and

AL(n) = A(n)−B(n)D+(n)C(n) + L(n)D+
⊥(n)C(n)

= A0(n) + [L(n)−B(n) ∗ χ(n, k)] ∗ C0(n),

BL(n) = B(n)D+(n)− L(n)D+
⊥(n) = B(n)D+

0 (n)− [L(n)−B(n) ∗ χ(n, k)] ∗D∗
0⊥(n).

Therefore with A(n), B(n), C(n), D(n) as defined in (4.21), and

L(n, k) =




Lχ(n, k)

−χ(n, k)


 , Lχ(n, k) = L(n)−B(n) ∗ χ(n, k), (4.24)

(4.23) is equivalent to

x̃g(n + 1) = [A(n) + L(n, k) ? C(n)] x̃g(n) + [B(n)− L(n, k) ? D∗
0⊥(n)] v(n),(4.25)

s̃(n) = C1x̃g(n).

Now consider the time-varying system as in (4.20). In light of the Kalman filtering theory

[4], the optimal state estimate for xK(n) based on output measurements yK(·) up to time

(n− 1) is the conditional mean x̂K(n|n− 1), satisfying

E
[{

xK(n)− x̂(n|n−1)

} {
xK(n)− x̂(n|n−1)

}∗] ≥
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E
[{

xK(n)− x̂K(n|n−1)

} {
xK(n)− x̂K(n|n−1)

}∗]
,

for any other estimate x̂(n|n− 1). Moreover the optimal state estimator has the form

x̂K(n + 1|n) = A(n)x̂K(n|n− 1) + K(n, k) ? [yK(n)− Cx̂K(n|n− 1)] , (4.26)

with K(n, k) = Kopt(n) the optimal state estimation gain which is non-dynamic, but

time-varying. The above yields the error system

xe(n + 1) = [A(n) + K(n, k) ? C(n)] xe(n) + [B(n)−K(n, k) ? D∗
0⊥(n)] v(n) (4.27)

with xe(n) = xK(n) − x̂K(n|n − 1) which is identical to (4.25), if xe(n) = x̃g(n), and

K(n, k) = L(n, k). Thus the augmented system g̃(n, k) = q−1 ? g(n, k) has the form of

state estimator. Hence minimization of J(g) over all possible g(n, k) ∈ Φ+ is equivalent

to optimal state estimator design over all possible state estimator gain K(n, k) = L(n, k),

which can be dynamical.

In light of the celebrated Kalman filtering theory, the optimality of the state estimator

is achieved by the static time-varying gain Kopt(n), and therefore our MMSE design for

optimal channel equalization needs consider only the state estimation gain L(n), without

searching over the dynamical gain L(n, k). However direct use of the Kalman filtering

on the augmented system increases the order of the system by M , which can be large.

The following demonstrate that we can obtain an nth order receiver filterbank to achieve

optimal channel equalization.

Theorem 4.3 Suppose that the set of all zero-forcing receiving filters Φ+ is nonempty.

Let the time-varying system φ(n, k) be as in (4.1). Then the blocked time-varying receiver
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filterbank g(n, k) ∈ Φ+ achieving optimal channel equalization is described by the state-

space model

x̃(n + 1) =
[
A0(n) + Lopt

χ (n)C0(n)
]
x̃(n) +

[
B(n)D+

0 (n)− Lopt
χ (n)D∗

0⊥(n)
]
y(n),

ŝ(n) = −D+(n)C(n)x̃(n) + D+(n)y(n), (4.28)

where D+(n) = D+
0 (n) + Θ(n)D+

⊥(n) and D+
⊥(n) = D∗

0⊥(n) with D0⊥(n) and D+
0 (n) as in

(4.3) and (4.14), respectively, and

A0(n) = A(n)−B(n)D+
0 (n)C(n), C0(n) = D∗

0⊥(n)C(n). (4.29)

The optimal state estimator gain and Θ are given by

Lχ(n) = Lopt
χ (n) := − [A0(n)X(n|n− 1)C∗

0(n) + B(n)S0(n)] R̃−1(n), (4.30)

Θ(n) = Θopt(n) :=
[
S0(n)−D+

0 (n)C(n)X(n|n− 1)C∗
0(n)

]
R̃−1(n),

where X(n|n− 1) is the covariance of x̃(n), calculated from the following recursive differ-

ence Riccati equation (DRE)

X(n + 1|n) = A0(n)X(n|n− 1)A∗
0(n) + B(n)R0(n)B∗(n) (4.31)

− [A0(n)X(n|n− 1)C∗
0(n) + B(n)S0(n)] R̃−1(n) [A0(n)X(n|n− 1)C∗

0(n) + B(n)S0(n)]∗

with X(0| − 1) = X0, the covariance for the initial value of the state vector x̃(0), and

R̃(n) = D∗
0⊥(n)Rv(n)D0⊥(n) + C0(n)X(n)C∗

0(n), (4.32)

S0(n) = −D+
0 (n)Rv(n)D0⊥(n), R0(n) = D+

0 (n)Rv(n)(D+
0 (n))∗. (4.33)

Proof: By the proof of Theorem 4.2, and [4], x̂K(n|n−1) = E [xK(n)|Yn−1] is the opti-

mal state estimate for the process in (4.20), based on measurements Yn−1 = {yK(k)}n−1
k=0 ,
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which satisfies the following inequality

E
[{

xK(n)− x̂(n|n−1)

} {
xK(n)− x̂(n|n−1)

}∗] ≥

E
[{

xK(n)− x̂K(n|n−1)

} {
xK(n)− x̂K(n|n−1)

}∗]
,

for any other state estimate x̂(n|n− 1). That is Σ̂(n|n− 1) ≥ Σ(n|n− 1) with Σ̂(n|n− 1)

the covariance for x̂(n|n − 1), and Σ(n|n − 1) for x̂K(n|n − 1), as proven in [4]. By the

equivalence established in Theorem 4.2, and the state-space model (4.25), we have

E [{xK(n)− x̂K(n|n− 1)} {xK(n)− x̂K(n|n− 1)}∗] = E
[
x̃g(n)x̃∗g(n)

]
,

with x̃g(n) as in (4.25). Denote Σ(n|n−1) = Σ(n|n − 1). Then the error covariance for

x̃g(n) is given by

Σ(n|n−1) = E
[
x̃g(n)x̃∗g(n)

]
= E








xg(n)

ŝ(n− 1)




[
x∗g(n) ŝ∗(n− 1)

]




(4.34)

= E




xg(n)x∗g(n) xg(n)ŝ∗(n− 1)

ŝ(n− 1)x∗g(n) ŝ(n− 1)ŝ∗(n− 1)


 =




Σ
(1,1)
(n|n−1) Σ

(12)
(n|n−1)

Σ
(21)
(n|n−1) Σ

(22)
(n|n−1)




Applying the Kalman filtering results [4], we have that Σ(n|n−1) satisfies the following

DRE,

Σn+1|n = A(n)Σ(n|n−1)A
∗(n)−

[
A(n)Σ(n|n−1)C

∗(n) + B(n)Rv(n)D0⊥(n)
]
R̃
−1

(n) ∗

∗
[
A(n)Σ(n|n−1)C

∗(n) + B(n)Rv(n)D0⊥(n)
]∗

+ B(n)Rv(n)B∗(n),

where R̃(n) as in (4.32), and Rv(n) as in (4.18). By the expressions in (4.21), the (1,1)

position of the above DRE is the same as

Σ
(11)
(n|n−1) = A0(n)Σ

(11)
(n|n−1)A

∗
0(n) + B(n)R0(n)B∗(n)

−
[
A0(n)Σ

(11)
(n|n−1)C

∗
0(n) + B(n)S0(n)

]
R̃−1(n)

[
A0(n)Σ

(11)
(n|n−1)C

∗
0(n)B(n)S0(n)

]∗
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which is identical to (4.31), with X(n|n− 1) = Σ11(n|n− 1) = Σ
(11)
(n|n−1). Because

A(n)Σ(n|n− 1)C∗(n) =




A0(n)

−D+
0 C(n)


 X(n|n− 1)C∗(n)D0⊥,

C(n)Σ(n|n− 1)C∗(n) = D∗
0⊥C(n)X(n|n− 1)C∗(n)D0⊥,

the optimal state estimation gain formula as in [4] yields the expressions in (4.30).

In light of the various properties of the Kalman filter, the following can be easily

deduced.

Corollary 4.1 The optimal channel equalizer given in Theorem 4.3 is stable in the sense

that A0(n) + Lopt
χ (n)C0(n) is exponentially stable. In particular, if φ(n, k) converges to a

time-invariant system, and the state space model matrices A(n), B(n), C(n), and D(n)

converge to A, B, C, and D respectively for which (4.8) holds and D has full column

rank, then the DRE as in (4.31) converges to the following ARE

X − A0XA∗
0 −BR0B

∗ + [A0XC∗
0 + BS0] R̃

−1 [A0XC∗
0 + BS0]

∗ = 0, (4.35)

with X the stabilizing solution, and the optimal state estimator gain and Θ converge to

Lχ = Lopt
χ := − [A0XC∗

0 + BS0] R̃
−1, Θ = Θopt :=

[
S0 −D+

0 CXC∗
0

]
R̃−1,

where AL = A0 + LχC0 is exponentially stable.

We summarize this section with the following design algorithm:

• Design Algorithm for Optimal Channel Equalizers:

• Step 1: Find state-space realizations for the blocked time-varying systems: h(n, k),

and f(n, k) ∀ n. Then find a state space realization for φ(n, k) in (2.47), which

satisfies (4.2), and which are exponentially stabilizable.



95

• Step 2: Set the state-space model for the optimal channel equalizer as in (4.28),

with the a priori initial condition x̃(0) = x̃0, which has the covariance X0 ≥ 0.

• Step 3: For n = 0, 1, · · ·, do the following:

– Compute ŝ(n) according to (4.28).

– Compute DRE (4.31). For n = 0, use X(0| − 1) = X0. Set Lχ(n) = Lopt
χ (n)

and Θ(n) = Θopt(n) according to (4.30).

– Compute x̃(n + 1) according to (4.28). For n = 0, use x̃(0) = x̃0.

End.

It is noted that the initial condition x̃(0) = x̃0, with covariance matrix X0, is assumed

a priori. Roughly speaking, X0 measures the confidence on the a priori estimate x̃0. If

no knowledge on x̃0 is available, then x̃0 can be taken as a zero vector, and X0 = ρIn can

be taken with ρ sufficiently large. Because of the optimality of the Kalman filter, x̃(n)

converges rather quickly to its steady-state value, and thus only the first a few estimates

may have large errors, which is shown for the simulation example in the next section.

4.4 Computational Complexity, BER, and An Illus-

trative Example

The DRE as in (4.31) has several different forms, and thus a complete analysis for the

associated computational complexity can be very lengthy. We will assume that the di-

mension of the state-space model for the composite system of the transmitters and the

channel is n > 0, and P > M . In this case, the DRE as in (4.31) can be decomposed into
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the following three equations:

X(n + 1|n) = A0(n)Y (n|n− 1)A∗
0(n) + B(n)

(
R0(n)− S0(n)R̃−1(n)S∗0(n)

)
B∗(n)

− A0(n)K(n) (B(n)S0(n))∗ − (A0(n)K(n) (B(n)S0(n))∗) (4.36)

K(n) = X(n|n− 1)C∗
0(n)R̃−1(n) (4.37)

Y (n|n− 1) = [In −K(n)C0(n)] X(n|n− 1) (4.38)

It can be verified that the recursive computation of the DRE (4.31) at each time sample

n entails

(P −M)2(P + n) + (P −M)(P 2 + n2) + nP (P −M) +O
(
(P −M)3

)

multiplications for the computation of R̃−1(n), 2Mn2 +MP (4P +n−M) multiplications

for (4.36), n(P−M)2+n2(P−M) multiplications for (4.37), and n2(P−M) multipilcations

for (4.38). It is noted that if the noise covariance matrix Rv(n) = σ(n)Ip, i.e., the noise

samples are independent of each other, then (4.36) is reduced to

X(n + 1|n) = A0(n)Y (n|n− 1)A∗
0(n) + B(n)R0(n)B∗(n) (4.39)

for which the number of multiplications is reduced to 2Mn2 + MP (1 + M) and the

multiplications needed for the computation of R̃−1(n) are reduced to

(P −M)2(P + n) + (P −M)(P + n2) + nP (P −M) +O
(
(P −M)3

)
.

• Bit Error Rate Probability

A commonly used performance measurement is BER, rather than the MSE. To find

an expression for the BER at the receiver, we denote J (n) = E [e(n)e∗(n)]. Thus there
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holds

J(g = φ+
opt

)(n) = trace {J (n)}|g=φ+
opt

. (4.40)

In light of [4], J (n) for the optimal channel equalizer can be found as

J (n) = D+
opt(n)

(
Rv(n) + C(n)X(n|n− 1)C∗(n)

) (
D+

opt(n)
)∗

, (4.41)

where D+
opt(n) =

(
D+

0 (n) + Θopt(n)D+
0⊥(n)

)
.

With s(n) as in (2.22), the MSE value Ji(n), the ith diagonal element of J (n), is given

by

Ji(n) := E[ei(n)e∗i (n)] ei(n) = g
i
(n, k) ? v(n), (4.42)

where g
i
(n, k) is the ith row of the blocked receivers filters g(n, k). Thus, the MSE for

the ith received data stream si(n) is Ji(n), and the average error probability for the M

symbol streams s(n) is defined as

Pe :=
1

M

M−1∑

i=0

P (i)
e (4.43)

where P (i)
e denotes the error probability of the ith symbol stream. For BPSK constella-

tions, the error probability of the ith symbol in the case of additive Gaussian noise (AGN)

is given by

P (i)
e =

1

2
erfc


 1√

Ji(n)


 . (4.44)

• An Illustrative Example

We consider the time-varying channel given by its impulse response

h(n) =
[

h0(n) h1(n) · · · hL(n)

]
= hss + δh(n),
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where each of the element of δh(n) is given by α−n with α = 1.2, and

hss =
[

1 −0.3 0.5 −0.4 0.1 −0.02 0.3 −0.1

]
.

The variance for the non-stationary white noise v(n) is given by σ2(n) = (σss +α−n)2 with

σss = 0.1. Thus the channel has order L = 7, and it converges to a time-invariant channel,

and the noise v(n) converges to a WSS white noise process. We choose P = 8 > M = 3,

and set initially f(n, k) = δ(n − k)
[

IM 0

]T

, which yields a simple state-space model

of φ(n, k) = h(n, k) ? f(n, k):

φ(n, k) =




A(n) B(n)

C(n) D(n)


 =




0M×M IM

H1(n) H0(n)


 ,

with [A(n), B(n), C(n), D(n)] a state-space realization for φ(n, k), and

H0(n) =




h0(n) 0 · · · 0

h1(n) h0(n)
. . .

...

...
. . . . . . 0

hP−1(n) hP−2(n) · · · h0(n)







IM

0


 ,

H1(n) =




0 hP (n) · · · h1(n)

...
. . . . . .

...

...
. . . . . . hP (n)

0 · · · · · · 0







IM

0


 ,

where hi(n) = 0 is taken if i > L. In order to compare with the existing results in the

literature, we will consider a different φ(n, k), which is normalized in some sense. For

this purpose we treat h(n, k), and f(n, k) as parameterized time-invariant systems, and

compute spectral factorization:

(
h(n, k) ? f(n, k)

)A
?

(
h(n, k) ? f(n, k)

)
= ΩA(n, k) ? Ω(n, k),
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with superscript A adjoint operation, where Ω(n, k) having size M × M is causal and

stable, and has a causal and stable inverse. Thus setting f
new

(n, k) = δ(n−k)
[

IM 0

]T

?

Ω−1(n, k) shows that φ
new

(n, k) = h(n, k) ? f
new

(n, k) is normalized in the sense that

φA
new

(n, k) ? φ
new

(n, k) = IM .

Such normalization is necessary for achieving the joint transceiver optimization [57], and

also allows comparisons of different designs on the equal basis. The transmitter filters

{fm(n, k)}2
m=0 can be easily obtained from f

new
(n, k). Theorem 4.3 can then be used to

compute g(n, k) from the optimal left inverse of φ
new

(n, k).

Following the steps of the design algorithm in the previous section, we obtain a minimal

realization (A(n), B(n), C(n), D(n)) for φ
new

(n, k). Because the system is exponentially

stable for each frozen time, exponential stabilizability of (A(n), B(n)), and the full rank

condition on D(n) are satisfied for this particular example. The optimal receiver filters

{gp(n, k)}7
p=0 can then be implemented according to Theorem 4.3. To compare with the

existing results, we compute the matrix J (n) as in (4.19) for each time n. The diagonal

elements of J (n) are then used to compute the BER probability at the same time n for

the BPSK case as in (4.43) and (4.44). Figure 4.2(a) shows the BER as a function of

Eb/N0(n), where Eb/N0(0) = 0.8264 and Eb/N0(∞) = 100 with the same initial condition

x̃0, but three different covariance matrices X0. It can be seen that it converges quickly

to its steady-state value, which shows the robustness of the BER performance as time

increases. Clearly the BER decreases as the Eb/N0(n) increases with time n, due to the

decaying noise variance to σss. Similarly as n increases, the time-varying channel h(n)

converges to the time-invariant channel hss, and σ(n) converges to σss, which is the same
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as the example studied in [57]. In the steady-state case, the channel will be the same as

the example in Chapter 3. BER of the time-invariant case is repeated in Figure 4.2(b) to

compare between the time-varying and time-invariant designs. The two figures 4.2(a) and

4.2(b) seem to be similar, but the curves in Figure 4.2(a) have more curvature than the

curves in Figure 4.2(b) and they become closer to each other as the time-varying channel

converges to the time-invariant one. The deviations at the beginning part are caused by

differences in initial condition x̃0, and the covariance matrix X0.
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Figure 4.2: Bit error rate sketches for (a) time-varying channels, and (b) time-invariant
channels.



Chapter 5

Conclusion

5.1 Introduction

Minimizing the error probability is an ultimate goal in digital communication. One of the

techniques that can be used to improve the received signal quality in telecommunications

is equalization. ISI is a common problem in telecommunication systems and wireless

communication systems, such as television broadcasting, digital data communications,

and cellular mobile communication systems can be eliminated by equalization. ISI has

been recognized as the major obstacle to high-speed data transmission and multipath

fading over radio channels. In a broad sense, the term equalization can be used to describe

any signal processing operation that minimizes the ISI.

Considerable efforts have been devoted to solving the ISI problem (see [75] and ref-

erences therein). Some of the techniques are post-equalization, multicarrier modulation,

and some techniques that use the precoding. Post-equalization techniques include the

least-mean-squared (LMS) equalizer, and the decision feedback equalization (DFE), which

were studied in [6, 50, 51, 56, 60, 65, 68]. Multicarrier modulation is a technique to

cope with the ISI, which aims to increase the transmission system length to eventu-
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ally cancel the ISI [14, 52, 77]. Another group of techniques is the use of precoding

such as Tomlinson-Harashima (TH) precoding [29, 62], trellis precoding [20, 22], matched

spectral null precoding in partial response channels [33], and other precoding schemes

[9, 34, 71, 73, 74]. Some of the popular communication applications can be described

in terms of filterbanks configurations (transmultiplexers) of subband transforms. Such

applications include FDMA,TDMA, and CDMA systems. In particular, FDMA which

is also called orthogonal frequency division multiplexing (OFDM) or discrete multitone

(DMT) modulation based systems has been more widely used than the others.

Among the recent research on channel equalization, a multirate filterbank was pro-

posed as a precoder before transmission in [75], which introduces the use of redundancy.

Another framework for multirate filterbanks was proposed in [25, 57]. This framework is

of particular interest, which encompasses existing modulations and equalization schemes.

Some of the applications in digital communications have recently generated signifi-

cant research activities, such as COFDM, based on which an European T-DAB stan-

dard has been defined. DFT-based DMT modulation scheme has become the standard

for asymmetric digital subscriber line (ADSL) communications [17, 19, 31, 32]. DWMT

[2, 15, 31, 32, 36] is also a common technique in DSL (digital subscriber lines). In addition

to these successful applications of multicarrier modulation, several emerging application

areas have received great attention as well.

Filterbank transceivers are capable of achieving channel equalization, because of the

introduced redundancies, which eliminate completely ISI under some mild conditions.

However optimal detection of the transmitted data symbols remains a major issue for
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dispersive channels with additive noise, giving the rise of the optimal design problem for

the transceiver receivers, which was the main goal of this dissertation.

5.2 Main Results

In this dissertation, we emphasized the design of filterbank transceivers (transmultiplex-

ers) for the purpose of eliminating the ISI completely, and minimizing the MSE of the

received signals. The results are applicable to wireless communication systems, due to the

same MIMO form of the mathematical models for the equivalent communication channels.

The main results of this dissertation are summarized as follows.

In Chapter 3, the new design algorithm is developed for transceiver receivers which

achieves optimal channel equalization for linear time-invariant channels and wide-sense

stationary (WSS) white noise processes. Transfer function and state-space methods were

employed to tackle the optimal design of channel equalizers. A necessary and sufficient

condition on PR is established in Theorem 3.1 for the noise-free case. Although joint

transceiver optimization is not investigated, a similar condition to [57] can be used for

the design of the transmitter filters to ensure good SNR (signal-to-noise ratio). Under the

PR condition for the given channel and the transmitter filterbank, all causal and stable

receiver filterbanks which achieve PR are parameterized. Under the condition that the

noise is white and WSS, the optimal receiver filterbank is obtained in Theorem 3.2 which

has the form of state estimators, and is a modified Kalman filter, which minimizes the MSE

among all possible linear time-invariant filters. The rich theory of Kalman filtering enables

the optimal design for transmitter/receiver filterbanks by employing efficient and reliable
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numerical algorithms. Our proposed design algorithm was illustrated by a simulation

example, which has a substantially smaller overall MSE than in [57]. The results obtained

in Chapter 3 are useful for all time-invariant signal models discussed as in Chapter 2.

We would like to mention that we have assumed that the channel and the transmitter

filters are known, and fixed. If the channel is unknown, or not fixed, then blind channel

estimation and identification need be employed before applying equalization [8, 13, 25,

30, 46, 59, 61].

In Chapter 4, the new design algorithm is developed for transceiver receivers which

achieve optimal channel equalization for time-varying channels and non-stationary white

noise processes. We consider the case where the estimated channel is available, and which

is time-varying. A necessary and sufficient condition on zero-forcing is established for

the noise-free case. Under the zero-forcing condition for the given time-varying chan-

nel and the transmitter filterbank, all causal and stable time-varying receiver filterbanks

which achieve zero-forcing are parameterized. Under the condition that the noise is non-

stationary and white, the optimal time-varying receiver filterbank is obtained in Theorem

4.3, which has the form of state estimators, and is a modified Kalman filter, and which

minimizes the MSE among all possible linear time-varying filters of arbitrary order. The

rich theory of Kalman filtering enables the optimal design for transmitter/receiver fil-

terbanks by employing efficient and reliable numerical algorithms. Our proposed design

algorithm was illustrated by a simulation example. The results obtained in Chapter 4 are

useful for all time-varying signal models discussed in Chapter 2.
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Often adaptive schemes are employed to estimate the channel, which yields time-

varying channel models. If the channel is unknown, then blind channel estimation and

identification algorithms as in [8, 13, 25, 30, 59, 61] need be employed before applying the

procedure of the optimal channel equalization, as proposed in Chapter 4.

5.3 Open Problems

Although optimal channel equalization for multiuser data networks has been completely

solved for linear models under the white noise assumption, the issue of optimal channel

equalization against ISI remains, if the corrupting noise is non-white, or the channel model

is unknown, which needs be estimated adaptively and blindly. Thus examples of open

problems that need further investigation include blind adaptive channel estimation, the

negative impact of the incorrect statistical information on blind channel estimation, opti-

mal blind adaptive channel equalization under the non-white noise, channel equalization

for non-minimum phase channel model, and optimal detection without the zero-forcing

condition. These problems remain unsolved in general, which are itemized as follows.

• Blind adaptive channel estimation, the associated modeling errors, and their nega-

tive impacts on optimal channel equalization.

Blind adaptive channel estimation is a technique in which, the channel characteris-

tics are unknown. A blind adaptive algorithm is employed to estimate the channel

which is time-varying, due to the mobile and ubiquitous nature of cellular phones,

and the applications to wireless data communications. The modeling error, which

measures the error of the estimated channel with respect to the original channel,
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may have the form ‖Φ(z) − Φ̂(z)‖α with Φ(z) the true channel model, and Φ̂(z)

the approximate model, needs to be explicitly formulated and minimized in channel

estimation. Moreover the norm used in the modeling error is an issue: Which is

better for quantifying the modeling error? Convergence analysis is another issue

with adaptive estimation algorithm. Although the existing literature contains a

large number of research papers on blind channel estimation, the modeling errors,

and their negative impacts on optimal channel equalization are overlooked.

• Optimal channel equalization under non-while noise, without the minimum phase

condition.

The identified channel model may not be accurate, due to the existence of the noise,

and the use of blind and adaptive channel estimation algorithms. Thus the modeling

error introduces non-white noise, in addition to the white noise in received signals.

Hence optimal channel equalization becomes more complex, and the results obtained

in this dissertation do not apply. It is necessary to develop new optimal channel

equalization techniques. Furthermore due to again the existence of noise, the channel

model obtained through blind and adaptive algorithms may not be minimum phase

at all time. Thus PR condition can not be satisfied. How to minimize the ISI

without the minimum phase condition is also an open and meaningful problem.

• Overall channel equalization performance when blind and adaptive channel esti-

mation, and optimal channel equalization are combined to achieve blind channel

equalization.
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As demonstrated in this dissertation, optimal channel equalization admits a recur-

sive algorithm, which can be implemented in real time. If it is used in conjunction

with the blind and adaptive channel estimation algorithm, then blind channel equal-

ization can be claimed. However the existence of the modeling error implies that

the overall channel equalization performance may not be the best achievable. How

to analyze, and improve the overall performance for blind channel equalization is a

very important open problem, and will motivate new criteria for channel estimation,

and optimal channel equalization.

5.4 A Concluding Remark

Broadband wireless communications have significantly increased transmission speed, which

in turn demanded new technologies for suppression of ISI. This dissertation has con-

tributed to optimal channel equalization for multiuser data networks, and successfully

used Kalman filtering in channel equalization, which minimizes the MSE in presence of

the white noise. However the research carried out in this dissertation does not stop here.

Many new open research problems emerge, as discussed in the previous section. We feel

that the approach taken in this dissertation is important. The use of state-space method

is not common in communications. Due to the internet, the data networks are multiuser

based, and the channels admit multi-input and multi-output (MIMO) for which state-

space theory is a natural mathematical tool to approach. Thus state-space is believed

to be the right method for many research issues in data communications, in addition to

optimal channel equalization.
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