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Abstract

In this paper, a simple and efficient design of prototype filters for cosine-modulated filterbanks is proposed. Variable combina-
tional window function with high side-lobe-fall-off-rate (SLFOR) has been used to design the prototype filter for cosine-modulated
filterbanks. Cutoft frequency of the filter is optimized to minimize the reconstruction error, which is also selected as an objective
function. Very small values of reconstruction and aliasing errors have been obtained with high SLFOR combinational window
filters, resulting in near perfect reconstruction (NPR) filterbanks. However, higher filter order is required to get NPR solution.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Multirate filterbanks find applications in a wide variety of digital signal processing systems such as subband cod-
ing, transmultiplexing, image, video or audio compression, spectral estimation, and adaptive signal processing [1-4].
When the filterbanks are applied to these applications, it is desirable that the reconstructed output signal should be
as close as possible to the input signal and the analysis and synthesis filters should have linear phase. Filterbanks
with such properties have been studied in depth and various approaches have been successfully developed [2—-12].
Johnston [5] introduced the first two-band, linear phase quadrature mirror filter (QMF) bank. Rothweiler [6] and
Chu [7] independently developed M-band extensions to it. An M-band QMF (maximally decimated filterbank) bank
consists of M parallel bandpass filters followed by M -fold down-sampler, while the corresponding synthesis bank has
an M-fold up-sampler in each channel, followed by a bandpass filter and, finally, a summation of all the channels, as
shown in Fig. 1. Among all M -band filterbanks, the cosine-modulated filterbank (CMFB) is one of the most frequently
used filterbank because the design is simpler and more realizable than that of a general filterbank system [1,4,7-9]. All
analysis and synthesis filters are cosine-modulated versions of a lowpass prototype filter. The design of whole filter-
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Fig. 1. M-band maximally decimated filterbank.

bank thus reduces to that of a single prototype filter. There are three sources of distortion in the reconstructed output
of such filterbank—amplitude distortion, phase distortion, and aliasing [1]. All of the filterbanks rely on the flatness
and linear phase of their prototype filters as well as on the orthogonality of their modulation functions to ensure good
amplitude and phase reconstruction [2,3,12]. The filterbank has perfect reconstruction (PR), if the polyphase compo-
nents of the prototype satisfy some pair-wise power complementary conditions [1,8]. For example, in [8—12], different
methods for PR CMFBs are shown. However, this paper deals with a near perfect reconstruction (NPR) finite impulse
response (FIR) cosine modulated filterbanks as they avoid the computation of large matrix sets, thereby reducing the
computational burden during the implementation [13-16]. In these filterbanks, aliasing is canceled approximately and
the distortion is only approximately a delay. Such approximate systems are called pseudo-QMF banks [1,16]. Let the
prototype filter P(e/“) be a linear phase. The conditions for approximate reconstruction can be stated in terms of
P(e/®) as follows [1,17]:

P =0 forlol> 2/, v
2M—1

T(ejw) ~1, where T(ejw) _ Z |p(ej(w—kn/M))|2. 2)
k=0

The accuracy of the first approximation in turn gives a measure of the aliasing error and the accuracy of the second
approximation gives a measure of the distortion error. Design approaches of the prototype filter involve nonlinear
optimization as well as linear optimization [1,16,17]. Lin and Vaidyanathan [17] improvised the design method pro-
posed in [16] by using Kaiser window. The optimization obtained in [17] has been achieved by using only a single
parameter. Experimentally, they have shown that the objective function is a convex function of the parameter being
optimized.

In this paper, a high SLFOR combinational window function is used in place of Kaiser window for designing pro-
totype filter with reconstruction error selected as an objective function in place of the different objective function used
by Lin and Vaidyanathan [17]. Cutoff frequency of the filter is optimized to achieve minimum value of reconstruction
error. Reconstruction (Epp) and aliasing errors (E,) [1] are selected as the parameters to measure the performance
of these filterbanks. A comparative performance analysis with the Kaiser window has also been done. Some of the
results of this paper have been presented at recent conference [21].

2. Window approach

A filter p(n) of length (N + 1) designed through window [18] is of the form:

(1) = hiyw(n),  where hy(n) = S22 9N 3)
n) =hi(n)w(n), where h;(n)=

P ’ ’ 71— 0.5N)

is the impulse response of the ideal filter with cutoff frequency w, and w(n) is the window function. Parzen-
cos®(nr /N') combinational window function (PC6) [19,20] given by (4) has been used to design the lowpass prototype

filter for cosine-modulated filterbanks. The value of SLFOR for PC6 window function is —24 dB/octave, whereas
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this figure for Kaiser window is only —6 dB/octave [19]. The comparative study of the filters designed by using PC6
window has been made by Sharma et al. [20]. Combinational window functions are designed by combining a data
window and a lag window in a linear manner. The expression for Parzen (lag window) and cosl(nrw /N) (data window)
combinational window with y as window shape parameter in discrete time domain is given as [19]

_[rlim]+ A =y)ldm)], |n[<N/2,
wpce(n) = {O, nl > N/2. 0<y<37, 4)
where
o _{1—24|%|2(1—2|% ), Inl<N/4,
2(1-2]%))°, N/4<In| < NJ2,

and
dn) = cosf’(ﬂ), In| < NJ2.
N
The FIR filter design relationships for PC6 window are given by the following equations [20]:

(i) Relationship between window shape parameter (y) and desired minimum stopband attenuation (Ag):
y =a+ (A + (A7), )

where

a =8.15414, b=-0.236709, ¢=0.00218617 for 30.32 < Ay < 51.25,
a =21.3669, b =—-0.605789, ¢ =0.00434808 for 51.25 < A < 68.69.

(ii) Relationship between normalized window width parameter (D) and (Ag):

D=a+ (bA) + (cA?), (6)
where

a =1.82892, b= —0.0275481, ¢ =0.00157699 for 30.32 < Ay < 43.60,

a=1.67702, b =0.0450205, ¢ =0.00000000 for 43.60 < Ag < 49.44,

a = 85.4738, b= —3.419690, ¢ =0.03578400 for 49.44 < A < 57.48,

a = —8.60006, b =0.4770040, ¢ =—0.00355655 for57.48 < A; < 68.69.

A filter designed by the use of window is specified by three parameters—cutoff frequency (w.), filter order (), and
window shape parameter (). For desired stopband attenuation (Ag) and an appropriately chosen transition bandwidth
(Aw), the order of the filter N can be estimated by

N> b +1 @)
= Aa) ’
where Aw is the normalized transition width = (ws — wp) /27.

The parameter y can be determined by the desired stopband attenuation using (5). After defining the window
coefficients using (4), the cutoff frequency w. = 0.5(wp + ws) is the only parameter left in the filter design which can
be optimized in such a way that the objective function given by following relationship is minimized.

¢ =max’|P(ej‘“)|2 + |P(ej(‘”_”/M))|2 - 1| forO<w<n/M. (8)
w

The algorithm developed in [16] and modified in [21] has been given in Scheme 1. Lin and Vaidyanathan used
different objective function in [17] called ¢pew and designed the prototype filters using Kaiser window. In this work,
¢ given by (8) has been used as an objective function in place of ¢pew and improved designs have been obtained.
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Scheme 1. Flowchart of the developed optimization algorithm.

3. Design example

For speech, 40 dB of attenuation in non-adjacent bands is sufficient to ensure an output signal of adequate qual-
ity [7,16]. Therefore, prototype filters with stopband attenuations in the range 40-60 dB in nonadjacent bands can
provide an output signal of adequate quality.

In this example, 8-band cosine modulated filterbank has been designed using Parzen-cos®(nr /N) and Kaiser win-
dow. The stopband attenuation of prototype filter is varied from 35 to 65 dB. The transition bandwidth is kept slightly
smaller than 7 /2M with stopband at /M. The values of passband and stopband frequencies are fixed before calling
the optimization algorithm. In this example, these values are 0.05457 and 0.12507w, respectively. The order of the
prototype filter P(e/®) is estimated by (7). At every iteration, the optimization algorithm adjusts the cutoff frequency
¢, to minimize the objective function given by (8), without changing the values of other parameters. Filter order (),
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Fig. 2. (a) Magnitude of Py (e-/ @) (dB) for Ag =50 dB; (b) zoom plot of (a) for the interval [0, 27t/ M]; (c) magnitude of T(e/' @) in the interval
[0, 27t/ M, as T (e/®) is periodic; (d) aliasing error.
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Fig. 3. (a) Magnitude response of P (ej @) (dB) for N = 68; (b) zoom plot of (a); (c) magnitude of T(ej @) in the interval [0, 27t/ M]; (d) aliasing
error.

peak-to-peak reconstruction error (Ep,) and aliasing error (E,) have been selected as performance measuring para-
meters [1]. Values of these parameters for Kaiser window and PC6 window prototype filters are calculated. Figures 2
and 3 show the comparative performance of the Kaiser window and PC6 window based filterbanks. The response of
the prototype filters shown in Figs. 2a and 3a are optimized using the developed algorithm. In Fig. 2, stopband attenu-



230 A. Jain et al. / Digital Signal Processing 16 (2006) 225-232

o , /_;-v—._“‘ 5 ; 3
o _?J____\._-___t_\(? -

025 03
Normalized Frequency

Fig. 4. Magnitude plot of 8-band cosine-modulated filterbank using: (a) PC6 window; (b) Kaiser window.
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Fig. 5. Plots of filter-order vs reconstruction error and filter-order vs aliasing error. (—) Proposed method. (- - -) As per Lin and Vaidyanathan [17].

ation Ay is fixed at 50 dB, resulting in values of N equal to 50 and 68 for Kaiser and PC6 window filters, respectively.
A zoom plot of these prototypes is shown in Fig. 2b. Figures 2¢ and 2d illustrate the reconstruction and aliasing errors,
respectively. Figure 3 shows a set of similar comparative plots. Here filter order (V) is fixed at 68, resulting in values
of stopband attenuation Ag equal to 65 and 50 dB for the Kaiser and PC6 prototype filters, respectively. These figures
clearly show the superiority of PC6 window over Kaiser window, because smaller values of reconstruction and alias-
ing errors are obtained with PC6 window. Although lower stopband attenuation is obtained in case of PC6 window for
the same filter order. Figures 4a and 4b show the magnitude response of the 8 band PC6 window and Kaiser window
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filterbank, respectively for N = 68. Also, as is evident from Fig. 5, the proposed algorithm outclasses the performance
of the algorithm used by Lin and Vaidyanathan [17] in terms of obtained values of reconstruction errors.

4. Conclusions

A simple algorithm has been proposed to design window based prototype filters for cosine-modulated filterbanks.
Simulation studies shows that the developed algorithm provides filterbanks with very small values of reconstruction
and aliasing errors. An improvisation in the performance of filterbank is obtained by using high SLFOR window
over Kaiser window for designing prototype filters. The PC6 window offers the advantage of a smaller reconstruction
error and a smaller aliasing error at the expense of reduced stopband attenuation. The algorithm is very simple and
takes equally better execution time. These pseudo-QMEF filterbanks can be used in real time applications such as echo
cancellation and cross-talk suppression with minimum aliasing and reconstruction errors at no additional cost.
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