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A Simple Method for Designing High-Quality 
Prototype Filters for M-Band Pseudo QMF Banks 

Charles D. Creusere and Sanjit K. Mitra 

AbsCmct-This correspondence discusses a new method for designing 
the prototype filters necessary to implement M-band pseudo QMF banks. 
This method does not rely on the traditional nonlinear optimization used 
in past work but rather optimizes a single parameter on a convex error 
surface, consistently delivering the best equiripple filter possible while 
minimizing the overlapped passband distortion. 

I. INTRODUCTION 
Shortly after Johnston introduced his two-band, linear phase 

quadrature mirror filter (QMF) bank in [l], Rothweiler [2] and 
Chu [3] independently developed M-band extensions to it. These 
have been called generalized or pseudo QMF banks and have also 
been extended to the nonuniform case in [4]. 

to obtain acceptable filters. Recently, Chen and Lee have devised an 
optimization technique based on linearization of the cost function, 
providing for more certain convergence and permitting the design 
of equiripple filters that satisfy the flatness constraint required for 
good amplitude reconstruction [6]. Unfortunately, this technique is 
both complicated and is only applicable to two-band filter banks. 
In another recent paper, the authors have developed a method for 
designing the prototype filters that avoids the optimization and instead 
relies on spectral factorization to generate the prototype filter [7]. 
While this method eliminates the problematic nonlinear optimization, 
it is conceptually more difficult to understand and use than the 
method proposed here, and the filter banks it creates are not flat 
at w = 0 and w = ir. In this correspondence, we outline a new, 
very simple technique for generating Mth-band lowpass prototype 
filters for use in pseudo QMF banks, especially those requiring high- 
quality signal reconstruction. This technique is presented in the next 
section, followed by a design example in Section I11 and conclusions 
in Section IV. 

An M-band maximally decimated analysis filter bank consists of 
M parallel bandpass filters followed by M-fold downsamplers, while 
the corresponding synthesis bank has an M-fold upsampler in each 
channel, followed by a bandpass filter and, finally, a summation of all 
the channels. There are three sources of distortion in the reconstructed 
output of such a filter bank-amplitude distortion, phase distortion, 
and aliasing. All of the filter banks given in [2]-[4] rely on the flatness 
and linear phase of their prototype filters as well as the orthogonality 
of their modulation functions (phase shifted sine waves) to ensure 

II. Fr~m DESIGN TECHNIQUE 
To get high-quality reconstruction in a pseudo QMF bank, the 

lowpass prototype H ( w )  must satisfy as much as possible two 
conditions: 

l ~ ( w ) 1 2  + I H ( ~  - $) I2 = 1, for o < w <  (1) M 

(2) 

and 

~ ~ l ( w > l =  0, for w > $. 
good amplitude and phase reconstruction. To reduce the distortion 
caused by aliasing, these filter banks cancel it between adjacent 
bands and assume that there is no aliasing between nonadjacent 
bands-i.e., that the stopband attenuation of a given analysis filter 
in all nonadjacent bands is infinite. While this is obviously not true 
for real filters, pseudo QMF banks work quite well in practice if 
the attenuation is sufficiently high compared to the output resolution 
required in the reconstructed signal. 

For speech, Chu found that about 40 dB of attenuation in nonad- 
jacent bands was sufficient to ensure an output signal of adequate 
quality [3]. For wideband audio, where input samples typically have 
16-bit precision, far greater stopband attenuation is needed for high- 
quality reconstruction. For example, in the digital compact cassette 
(DCC) music format, Phillips uses a 32-band pseudo QMF bank for 
signal analysis and coding with a stopband attenuation in nonadjacent 
bands of greater than 100 dB, requiring an FIR prototype filter with 
512 taps [5]. Unfortunately, the classical procedure for designing 
such prototype filters, as first developed in [ 11 for the two-band case 
and subsequently modified in [2]-[4] for the M-band case, requires 
optimization of a nonlinear cost function with many local minima. 
The larger the number of filter taps, the more difficult it is to find 
an initial starting point that allows the optimization to converge to a 
good filter. In [ 13, Johnston points out that even for the two-band filter 
bank, the optimization process requires significant human intervention 
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If (1) is satisfied exactly, all amplitude distortion is eliminated in the 
combined analysis/synthesis system, while if (2) is satisfied, there 
is no aliasing between nonadjacent bands. Aliasing between adjacent 
bands, on the other hand, is eliminated by selecting appropriate phase 
factors in the modulation [2]. The modulated analysis and synthesis 
filters are then given by 

Re(a;) cos[ir(2i + 1)(2n + 1)/4M] 
-Im(a;) sin[ir(2i + 1)(2n + 1)/4M] h;(n) = 

O j i < M  (3) 

and 
Re(a;) cos[ir(2i + 1)(2n + 1)/4M] 

+Im(a;) sin[ir(2i + 1)(2n + 1)/4M] 
O < i < M  (4) 

respectively, where the phase factor a; is 

./z 1+j, i even 
a i = y . {  1 -j, i odd. 

Unfortunately, it is not possible to design a finite length filter that 
exactly satisfies the constraints of (1) and (2), so it is necessary 
instead to design one that approximately satisfies them. The methods 
of [1]-[4] try to do this directly by combining (1) and (2) into a 
single cost function that is then minimized using the Hooke and 
Jeaves algorithm. Our method uses the Parks-McClellan algorithm 
[8] to directly design filters that approximately satisfy (1) and (2) by 
varying the passband edge. The filter length, relative error weighting, 
and stopband edge are fixed before the optimization procedure is 
started, while the passband edge is adjusted to minimize 

O < W < A  M' 
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Fig. 1. Flowchart of the proposed optimization algorithm. 

We have found experimentally that this cost function is convex 
with respect to the passband edge. Thus, any reasonable optimization 
routine will converge to the same global minima regardless of the 
initial starting value of the passband edge. A flowchart of the com- 
plete optimization routine is shown in Fig. 1. This algorithm simply 
adjusts the passband edge at each iteration by the stepsize denoted 
by step, designs a new equiripple filter (using the Parks-McClellan 
algorithm), and computes the error, 4, (denoted error) using (6) as 
the cost function. Whenever the error goes up over that of the previous 
iteration (called prev error), step is halved and the search direction 
labeled dir is changed. The optimization process is halted when the 
difference between the error of the current iteration and that of the 
previous iteration is within a specified tolerance (called tol). While 
we could have used a gradient descent algorithm instead of this one, 
it would have been very slow because approximation of the gradient 
(via a finite difference) would have required two evaluations of the 
cost function at each step. Since cost function evaluations entail the 
design of complete equiripple filters, they are very expensive and 
should be done as seldom as possible. Using the proposed algorithm, 
we avoid this problem somewhat since we only have to perform extra 
cost function evaluations when the search direction is changed. 

Because this algorithm only minimizes the overlapped passband 
ripple given by (6) and since the stopband edge is fixed at x / M ,  
the length of the filter must be chosen such that the filter has 
enough stopband attenuation to approximate (2) effectively. We have 
found that the best way to do this is to fix the passband edge 
at a / 2 M  (with the stopband fixed at s / M )  and select the filter 
length such that the desired attenuation in the stopband is achieved. 
In the course of the optimization procedure, the passband edge 
will generally move toward zero, slightly increasing the stopband 
attenuation. We have also found it useful in this optimization to 
weight the passband error more heavily than the stopband error when 
invoking the Parks-McClellan algorithm. In one example, we found 
that a weighting of ten to one halved the final filter's cost (q50pt 
as expressed by (6)) while only reducing the stopband attenuation 
by less than 1 dB. We have considered adding an outer loop to the 
procedure shown in Fig. 1 to optimize the filter coefficients over 
both the weighting factor and 4 (fixing first the weighting factor, 

-120 - 
-140 - 
-180 - 

I 
0.5 1 1.5 2 2 5  

-180 1 

Fig. 2. Frequency response of prototype filter for an eight-band pseudo QMF 
bank. This filter was designed with the passband emr being weighted five 
times more than the stopband error. 
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Fig. 3. Passband ripple of the eighth-band filter overlapped with itself shifted 
by ~ / 8  (4oopt + 1). 

optimizing q5 and then vice versa with the process repeating until 
convergence is achieved). Unfortunately, while this procedure does 
improve the quality of the final prototype filter slightly, it also greatly 
increases the convergence time of the algorithm. Consequently, for 
our design examples we have chosen to fix the weighting and optimize 
only over 4 using the procedure outlined in Fig. 1. 

III. DESIGN EXAMPLES 
We demonstrate now the operation of the previously described 

method by using it to design two different lowpass prototype filters: 
an eighth-band filter and a 32nd-band filter. Both filters were designed 
for high quality signal reconstruction with a stopband attenuation of 
greater than 100 dB, leading us to select filter lengths of 128 for the 
eighth-band filter and 512 for the 32nd-band filter. The magnitude 
response of the eighth-band filter is shown in Fig. 2 and its overlapped 
passband response, 1, is shown in Fig. 3. The stopband 
attenuation of the eighth-band filter is about 116 dB while that of 
the 32nd-band filter is 118 dB; the maximum deviation from unity in 
their overlapped passbands are 0.008 and 0.007 dB, respectively. Note 
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IV. CONCLUSION 
We have described here a very simple algorithm for designing 

lowpass prototype filters suitable for use in pseudo QMF banks. To 
illustrate the applicability of this algorithm, we have designed two 
different filters, both for such applications as wideband audio coding 
that require high quality reconstructed signals. As pointed out in 
141, such filters cannot be easily designed using the conventional 
nonlinear technique because they are too long, leading to cost 
functions that have too many local minima. By contrast, the quality 
of the solution found with our method does not go down as the filter 
length increases-in fact, it seems to get slightly better. We feel that 
this filter design method is very valuable because of its conceptual 
simplicity and because of the ease with which it can be implemented 
using the widely available Parks-McClellan algorithm. 
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Fig. 4. Frequency responses of all eight filters in an eight-band pseudo QMF 
bank. Alternating solid and dotted lines have been used for clarity. 
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Fig. 5. Overall frequency response of eight-band analysis/synthesis system. 
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from Fig. 3 that the error in the overlapped passband is equiripple 
(which is also the case for all other filters designed with this method), 
indicting that we have, indeed, minimized the cost function of (6). 
For the actual eight-band analysis bank shown in Fig. 4, we see 
that the transition bands of adjacent filters overlap but that those 
of nonadjacent filters do not. In addition, the frequency response for 
the complete analysis/synthesis system is very flat (see Fig. 5) with 
no large dips or bulges at w = 0 or w = T .  

We have also designed an eighth-band lowpass filter with 48 taps 
and compared it to a similar filter designed using the conventional 
nonlinear optimization process in [4]. Our filter has a higher stopband 
attenuation than theirs, but its overlapped passband error is 0.11 
dB compared with 0.016 dB for their filter. While it is difficult to 
say which of these filters would provide the best results in a real 
application, our method of filter design is far easier to implement 
and converges with much more certainty to a good result than does 
theirs. It is also shown in [4] how to use multiple stages of pseudo 
QMF banks to create nonunifom maximally decimated filter banks. 
Filters designed using the proposed method can be substituted for 
those in [4] and used to create nonuniform filter banks since they 
have the same salient properties. 
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