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Near-Perfect-Reconstruction Pseudo-QMF Banks

Truong Q. Nguyen, Member, IEEE

Abstract— A novel approach to the design of 1/-channel
pseudo-quadrature mirror filter (QMF) banks is presented.
In this approach, the prototype filter is constrained to be a
linear-phase spectral-factor of a 2)/th band filter. As a result,
the overall transfer function of the analysis/synthesis system is
a delay. Moreover, the aliasing cancellation (AC) constraint is
derived such that all the significant aliasing terms are canceled.
Consequently, the aliasing level at the output is comparable to
the stopband attenuation of the prototype filter. In other words,
the only error at the output of the analysis/synthesis system is
the aliasing error which is at the level of stopband attenuation.
Using this approach, it is possible to design a pseudo-QMF
bank where the stopband attenuation of the analysis (and thus
synthesis) filters is on the order of —100 dB. Moreover, the
resulting reconstruction error is also on the order of —100 dB.
Several examples are included.

[. INTRODUCTION

IGITAL filter banks are used in a number of commu-
nication applications such as subband coders for speech
signals [1]-{3], frequency domain speech scramblers [4], and
image coding [5]-{7]. Fig. 1(a) illustrates a typical M -channel
maximally decimated parallel filter bank where Hj(z) and
Fi(2),0 < k < M — 1 are analysis and synthesis filters,
respectively (only finite impulse response (FIR) filters are
considered in this paper). The analysis filters Hy(z) channelize
the input signal z(n) into M subband signals, which are in
turn decimated by M. In speech comparison and transmission
applications [1]-{4], these M subband signals are encoded and
transmitted. At the receiving end, the M subband signals are
decoded, interpolated, and recombined using a set of synthesis
filters Fy(z). The decimator, which decreases the sampling
rate of the signal, and the interpolator, which increases the
sampling rate of the signals, are denoted by the down-arrowed
boxed in the figure [2], respectively. The theory for perfect
reconstruction has recently been established [8]-{12].
Recently, the perfect-reconstruction (PR) cosine-modulated
filter bank has emerged as an optimum filter bank with
respect to implementation cost and design ease [13]-[16],
[33]-[35]. The impulse responses of the analysis and synthesis
filters hy(n) and fx(n) are cosine-modulated versions of the
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Fig. 1. (a) M-channel maximally decimated filter bank; (b) typical ideal
responses of the analysis filters Hy(z); (c) typical ideal response of the
prototype filter H(z).

prototype filter £(n) [14]. In other words,

h“n)=2Mﬁ)as(@k+U§%i(n—9251>+(—n Z)’

st =2ty eos( @k D3 (- ) =G ).

2M
0<n<N-1 "
0<k<M-1

where N is the length of h(n). It is shown in [14] that the
2M polyphase components of the prototype filter H(z) can
be grouped into M power-complementary pairs where each
pair is implemented to minimize the stopband attenuation of
the prototype filter. As demonstrated in [14], it is possible
1o design a 17-channel PR cosine-modulated filter bank with
—40 dB stopband attenuation. This optimization procedure,
however, is very sensitive to changes in the lattice coefficients
because of the highly nonlinear relation between the prototype
filter h{n) and the lattice coefficients. As a result, a PR cosine-
modulated filter bank with high stopband attenuation (on the
order of —100 dB) is very difficult to design. For more than
two channels, no example of a PR cosine-modulated filter
bank, where its prototype filter has —100 dB attenuation, has
yet been found. Consequently, in order to design a filter bank
with high attenuation, it is judicious to relax the PR condition.
In other words, it is sufficient (in the practical sense) to design
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a filter bank where the reconstruction error is small (on the
order of —100 dB).

The pseudo-QMF banks belong to the family of modulated
filter banks. Pseudo-QMF theory is well known [20}-[23] and
is widely used. As with the PR cosine-modulated filter bank
(1), the analysis and synthesis filters are cosine-modulated
versions of a prototype filter. Since the desired analysis
and synthesis filters have narrow transition bands and high
stopband attenuation, the overlap between nonadjacent filters
is negligible. Moreover, it is shown in [20] that the significant
aliasing terms from the overlap of the adjacent filters are
cancelled by the filter designs. The prototype filter H (z) is
found by minimizing an objective function consisting of the
stopband attenuation and the overall distortion. As shown in
[201-{23], although it is possible to obtain a pseudo-QMF bank
with high attenuation, the overall distortion level might be high
(on the order of —40 dB). In summary, the overall distortion
of the pseudo-QMF bank is not sufficiently small enough for
application where a —100 dB error level is required.

The modulation schemes in the cosine-modulated filter
banks [14], the modulated lapped transform [34], the Prin-
cen/Bradley filter bank [35], the pseudo-QMF bank [201-[23],
and the proposed NPR Pseudo-QMF bank use consine modu-
lation with different phase factors. The first three filter banks
are PR filter banks, whereas the last two are NPR filter banks.
The NPR filter bank proposed here has no restriction on the
filter’s length, and it sacrifices some aliasing at the output for
better stopband attenuation.

Reference [15] presents an approach to pseudo-QMF design
which does not involve any optimization. The prototype filter
of an M-channel filter bank is obtained as a spectral factor
of a 2Mth band filter [24], [25]. Since the procedure does
not guarantee that H(z) is a linear-phase filter, the overall
transfer function To(z) of the analysis/synthesis system is an
approximately flat magnitude response in the frequency region
€ < w < (7 —¢). Here, ¢ depends on the transition bandwidth
of the prototype filter and 0 < e < «/(2M). Furthermore,
since the prototype filter is a spectral factor of a 2M th band
filter, designing a filter bank with high attenuation is difficult
because of the sensitivity in the spectral factor algorithm.
Moreover, the overall distortion can be large near w = 0 and
w = 7.

In summary, designing a filter bank with high stopband
attenuation (~—100 dB), small overall distortion (~—100
dB), and small aliasing (~—100 dB) is a formidable task.
As discussed above, the PR cosine-modulated filter bank is
too restrictive and the pseudo-QMF bank is too loose in
its constraints. Consequently, the above filter banks, i.c., the
PR cosine-modulated filter bank [14], [16] and the spectral-
factorized pseudo-QMF filter bank [20], [15], do not yield
satisfactory results. In this paper, an algorithm is described to
obtain the pseudo-QMF bank with the following properties:

1) The analysis and synthesis filters have high stopband

attenuation (~—100 dB).

2) Overall distortion and alias level are small (~—100 dB).

In Section 11, a brief summary of the pseudo-QMF bank and
the spectral factorization approach to the pseudo-QMF bank

is presented. The new approach is derived fully in Section IIL.
Moreover, it is shown that the overall distortion of the new
pseudo-QMF bank is a delay, i.e., there is no magnitude or
phase distortion. Furthermore, the aliasing level is comparable
to the stopband attenuation. (Here, the aliasing level and the
stopband attenuation are defined to be the peak aliasing error at
the output and the peak stopband attenuation of the prototype
filter, respectively.) In other words, the only error at the output
is the aliasing error, which is very small. Several examples are
given and their frequency responses plotted in Section IV.

Notation Used in the Paper: The variable w is used as the
frequency variable, whereas the term “normalized frequency”
is used to denote f = w/(27). Boldfaced quantities denote
matrices and column vectors, with upper case used for the
former and lower case for the latter, as in A, h(z), etc. The
superscript ¢ stands for matrix transposition. H(z) 2 H (z71).
Moreover, [A]x; and [h]; represent the (k,{)th and kth
element of the matrix A and vector h, respectively. The k x k
identity matrix is denoted as Iy the k x k “reverse operator”
matrix Ji is defined to be

0 - 01
0 10

Je=1|. o
1 - 0 0/,

and Vis V = (Im"‘l’)*ml (i) The subscripts of I and Ji

. . 2 .
are often omitted if they are clear from the context. Wy is
defined as e=727/M  Unless mentioned otherwise, W is the
same as Wapy.

II. REVIEW OF PSEUDO-QMF BANKS

Consider the filter bank in Fig. 1(a) where the ideal fre-
quency responses of the filters I k(z) are shown in Fig. 1(b).
It can be verified that the reconstructed signal X (2) is [10]

M-1
MX(2) = X()To(2) + Y XEWi)Ti(z) (@)
=1
where
M-1
Ti(z) =Y Fio(2)He(zW}y). 3)
k=0

From (2), it is clear that Ty(z) is the overall distortion transfer
function and Tj(z),l # 0 is the (M — 1) aliasing transfer
function corresponding to X (2W};). Thus, for a PR system,

T()(Z) EY e
{TI(Z)ZO- 1<I<M-1 C))

where 7o is a positive integer. From a practical perspective,
the above conditions in (4) are too restrictive; it is sufficient
to design the filter bank such that To(z) is linear phase and

|To(e?*)] =1+ 61.
{IT?(ej”)l = b, Y olci<mM—a )

where 6, and &y are small numbers (~-100 dB). In the
examples presented later, ; < 1x 10~12 and 6, is comparable
to the stopband attenuation.
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A. Pseudo-QMF Banks [20]

Most of the material in this section can also be found in
[20], [14], [16]. The main properties are summarized in the
following:

1) The linear-phase prototype filter is designed to approx-
imate the frequency response in Fig. 1(c). A weighted
objective function consisting of the stopband attenuation
and the overall magnitude distortion is minimized.

2) The analysis and synthesis filters Hr(z) and Fy(z) are
obtained by the modulation of H(z) as follows:

Hi(2) = apei HW /D)) 4 afcp H(zW = (kF1/2)),
Fi(2) = aZCkH(ZW(kH/z)) + akCZH(zW‘(’““/?)),
0<k<M-1 (6)

where a = €%, ¢, = WEH/DUN=1/2) and N is
the length of H(z). The impulse response coefficients
hi(n) and fr(n) are given by

hi(n) = 2h(n) cos<(2k+l)ﬁ (m E) +ek> :

2
N-1
fr(n)=2h(n)cos ((2k+1)2—%(n - —2—> -—0k>,
0<n<N-1
{ogkgM—L M

From (6) and (7), the analysis and synthesis filters are
related as

{fk(n) = he(N —1-n),

Fu(z) = =N -VH(z), E<M-1. (8

3) 6y are chosen such that

0k+1=0kig 0<k<M-1 ©)
so that all the significant aliasing terms are cancelled.
Furthermore, -in order to ensure relatively flat overail

magnitude distortion,

™ m ™ s
b= (7 + 15) and 61 = £(7 +m§) (10)
where | and m are arbitrary integers. Although other
choices are possible, the following choice is used in this
paper:

0<k<M-1

O = (—1)'@%, (n

This satisfies both (9) and (10).
4) The overall transfer function Ty(2) is

1 M-1
T[)(Z) = M z Hk(Z)Fk(z)
k=0

_(N—1) M-1
L—(N-1)

= 2 M@ Hk(2). (1)
k=0

Note that the above Tp(z) has a linear phase independent
of Hy(z); therefore, the reconstructed signal has no
phase distortion.
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B. Spectral Factorization Approach to
Pseudo-QMF Design [15]

Most of the material in this section can also be found in
[15]. The main properties are summarized in the following:

1) The prototype filter H(z) does not have linear-phase
symmetry since it is obtained by spectral factorization.
The length N is assumed to be a multiple of M,
ie., N = mM. No optimization procedure is needed.
First, a 2Mth band filter G’(z) is designed. Let (2
be the stopband attenuation of G'(z). From G(z) by
G(z) = G'(z) + (». Find a spectral factor of G(z) and
set it to H(z).

2) Let by = e’®* and

Se(z) 2 b H(WHY) 4 prH(W -T2 (13)

then the analysis and synthesis filters Hy(z) and Fi(z)
are obtained as follows:

Sk(z).
Hy(2) = { szN)*US'k(z),

evenk
odd k

0<k<M-1. (15

(14)

Note that the above choice for Fj(z) is to ensure the
linearity in the phase response of To(z). The impulse
response coefficients hi(n) and fi(n) are given by

hi(n) = { sz;L\E_ 1-n),
fe(n) =he(N =1 -n).

evenk
odd k& (16)
(7)

where si(n) = 2h(n) cos ((2k + 1)(7n/(2M) + ¢x)-
3) In order to ensure cancellation of the significant aliasing
terms, ¢y should be satisfied:
Prar =22+ DT g 0<kSM-2 (Y
where i is an integer. One of the choices that satisfies
(18) is
T

b== k.

1 19

4) The overall transfer function To(z) is
L—(N=1) (V1)
TO(Z) ~ T * ¢+ T[Pl(z) + PQ(Z)] (20)
where P;(z) cannot be eliminated for any choice of ¢x.
The magnitude response of Py(z) is significant only in
the region |w| < e, whereas that of Pp(2) is significant
only in the region (m —¢€) < |w| < (7 + €), where
¢ depends on the transition bandwidth of H(z) and
0 < € < w/2M. Consequently,
|To(e?*)| ~ constant, e<w<(r—¢. Q)
|To(e?“)| can have bumps or dips around w = 0 and
w = 7, depending on the values of P1(z) and Ps(2).
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C. Discussion Pertaining to the New Pseudo-QMF Design

The new pseudo-QMF design is a hybrid of the above
pseudo-QMF designs. First, the prototype filter H(z) is chosen
to be a linear-phase filter. Moreover, H(z) is designed such
that it is a spectral factor of a 2Mth band filter. The analysis
and synthesis filters hy(n) and fi(n) are cosine-modulated
versions of the prototype filter A(n) as in (7) with 6 chosen
as in (11). This choice of modulation yields an efficient im-
plementation for the whole analysis/synthesis system. Together
with the above 2Mth band constraint, it will be shown that
To(2) =~ a delay. Even though H(z) is a spectral factor of
a 2Mth band filter, no spectral factorization is needed in the
new approach. In other words, the 2Mth band constraints are
imposed approximately. This approach yields NPR solutions
where there is some aliasing at the reconstructed output (the
level is comparable to the stopband attenuation). In order to
obtain total aliasing cancellation (and thus, PR), not only
should the prototype filter h(n) be a spectral factor of a
2Mth band filter, but each polyphase component (in an M-
phase decomposition) of h(n) should be a spectral factor of
a halfband filter [34].

1II. THE NOVEL PSEUDO-QMF BANK

A. Properties of the New Pseudo-QMF Bank

Let H(z) = L) h(n)z™" be the real-coefficient, linear-
phase, even-length prototype filter of length N. Assume that
H(z) is a spectral factor of a 2Mth band filter G(2). i.e.,

G(z) =2 N"VH()H(z) = H(2) (22)

in lieu of the linear-phase property of H(z). The analysis
and synthesis filters hi(n) and fi(n) are cosine-modulated

versions of h(n). ie.,
N-1 P
M("_ ) >+(_1) Z)‘

fk(n)=2h(n)cos((2k+l)2M < - ﬁi) —(—1)k1>,

0<m<N-1
0<k<M-—1.

NJ

hi(n)=2h(n) cos ((2k+ 1)

Consequently, Hy(z) and Fi(z) are related as

{Hk(z) = arcr HWEHYDY 4 grer H(zW—kr1/2),

Fir(z) = z_(Nfl)Hk(Z),
0<k<M-1 (24)
where ap = €% ¢, = WHETUDN=1/2) and g, =

(=1)*(n/4). Note that the above filter choices are the
same as those of the pseudo-QMF bank [20], with the
exception that H(z) here is a spectral factor of a 2Mth
band filter. In the following section, it will be shown that
To(z) = (1/M)z=(V-1),

B. The Overall Transfer Function To(z)

When the 6, are chosen as in (11), the analysis/synthesis
system is “approximately” alias-free, and the overall transfer
function Tp(z) can be expressed as

—(N 1) M-1

X(z
ngg ~ To(z2) = ——— Y Hi(2)Hi(2). (25)
k=0
Substituting (24) into (25), one obtains
) M-1
NTIMT(2) = Y [agckH (zWF+1/2)
k=0
+ aicZH(zVV*(kH/Z))]
apeiH (= WD) e, H(z WD)
M-1
— z {H(ZW(IH-I/Z))H(z—lwf(kﬁ—l/?))
k=0
+ H(ZWA(k+1/2))H(Z~1W(k+1/2))}
M-1
+ z {aiczH(Zw(k+l/2))H(Z~lw(k+l/2))
k=0
+ (aic%)*H(zW"(Hl/?))H(z_lw_(k“/z))}
M-1
= Z {H(zw(kﬂ/z))H(z—lw—(kﬂ/?))
k=0
+ H(zW(QJ\/I—k—1/2))H(Z—lw—(ZAl—k-—l/2))}
M-1
+ ST {a} G H (W ST H(zT W )
k=0

+(a2d) —(N~1)W(1\'—1)(k+1/2)H(z—lw(k+1/2))]
NI WD) (k12

where the linear-phase property of H(z) is used in the last
summation of the above equation. After some simplification,
one obtains

2M -1
\T lMTo Z H(ZW(k+1/2))H( —1W k+1/2))

k=0
M-1

+ Z H(zw;(k—t-l/Z))H(z—lw(k+1/2))
k=0

Ja3c} + (afed) W TDEHIL (26)

Since

2 _ W]\I(k+1/2) and cz — ‘/‘/~(1\7—‘1)(!v+1/2)7

after some simplification, the expression in the last summation
is O for all &, ie.,

(@3¢} + (23 WWN-DED =0 VE. 27
Substituting (27) into (26) yields
2M -1
NUMTy(2) = Y HEW YD) H (W),
k=0
(28)
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Since G(z) = 2N~V H(z)H(271) is a 2Mth band filter,
i.e.,
2M -1
Y HEWHH('WF) =1,
k=0

(29

the final result is

2N"IMTy(z) — 1, orequivalently, To(z) = Lz_(N_l).
(30)
In summary, as long as the prototype filter H(z) is a
linear-phase spectral factor of a 2Mth band filter and the
Hy(z) and Fy(z) are obtained as in (24), then the overall
distortion transfer function Tp(z) is a delay. It remains to
develop a design method to find a linear-phase filter H(z)
where G(z) = H?(z) is a 2Mth band filter. Furthermore,
the method should produce a prototype filter H(z) with high
stopband attenuation. The next section focuses on the design
method.

C. The Design Method (Even N)

In this section, we will describe the design method for the
even N case, i.e., N = 2(mM+m;) where 0 <m; < M -1.
The odd N case will be considered in Section III-D. Defining h
to be the vector consisting of the first mM + m, coefficients
h{(n), ie.,

h=[R(0) h(1) R(mM + m; — 1)]' (31
and e(z) to be
e(z) — [1 z—l z—(m}\/[+m1—l)]t7 (32)
then the prototype filter H(z) can be represented as
t ez
H(z)=h'I J) (Z_(mM-(-ml)e(z)) (33)

where the dimensions of both I and J are (mM + m1) x
(mM + my). Using the above notation, the 2Mth band filter
G(z) is

4mM+4m, -2

D

=H2(:)—: B (i) )
(e!(2) z-<mM+ml>et(z))<j)h

=ht[U(2) + 2z~ "MF™)(JU(2) + U(2)J)
+ 272 MAm) JU (2) T]h

G(z) = g(n)z™"

(34)
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where
1
271
U(z) =e(2)e'(z) = :
Z—mM-+m1—1
2mM+42m; -2
. (1 Z_l . Z—(mM+m1—l)) _ Z 27"8,.

n=0

(35)

Note that the matrices S, in (35) are constant matrices with
elements 0 and 1. It can be verified that

Ei ]kz={l’ ktl=mn

0, otherwise. (36)

Substituting (35) into (34), the following expression for G(z)
results:

AmM+4m,; —2
G(z) = g(n)z™"
n=0
2mM+2m; —2
— Rt l: Z 278 + z*(mMerl)
n=0
2mM+2my -2
. (J z z S,
n=0
2mM4+2m—2
+ Y z-"an)
n=0
2mM+2m,; -2
+ Zf(ZmIW-}—?ml)J Z Z_nSnJ:| h
n=0
4mM+4m—2
=ht( > z“"Dn)h 37
n=0

where D,, depends on S, and J as follows (see Appendix A
for details):

((Sn;
0<n<mM+m; -1
Sn + JSn—mMAml + Sn-mM—m1 J;
mM +m; <n<2(mM+m; —1)
ISmaimi—1+ Smmam,—1d;
n=2(mM+mp) -1
JSn—mM—ml +Sn7mA1~mIJ+JSn—2mM—2m1J;
2(mM +m1) <n <3(mM+mq) -2
JSn-?mM—Zml J;
3(mM +m1) — 1 <n < 4(mM+m) —(%.8)

The objective is to find h such that G(z) is a 2Mth band filter,
i.e., see (39), which is at the bottom of this page: Equating

0; n:2(mM+m1)—1—2lM,{

n=—=

1<li<m-1,
1<l <m,

m1=0

my 75 0 (39)

2(mM +m1) - 1.
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the terms with the same power of 271 in (37) and using (38)
and (39), the following m constraints on h are obtained:

h'S,h=0;
(m+1)
2

[(m—;ﬁ}s@m, my # 0

ht(Sn + JSn—'m]\'[—ml + Sn—rm’v[—ml J)h = 0
1<1< t(m—;QJ —1

ht(JSmM—%rnlfl + SmAI+m1—1J)h = 511\4"

In summary, given m,m;, and M, one can calculate S,
as in (36). The 2Mth band constraint on G(z) becomes the
constraints on h as shown in (40) and (51) for even and odd
N, respectively. Suppose that one is able to obtain h such that
it satisfies the constraints in (40) and (51); then the resulting
prototype filter H(z) [found using (33) or (46)] is the spectral
factor of the 2Mth band filter G(z). Moreover, the linear-
phase property of H(z) is structurally imposed on the problem.
Thus, the above design method finds a spectral factor of a
2Mth band filter without taking the spectral factor!™ As long
as the filter coefficients h(n) satisfy the 2\ th band constraints
in (40) and (51), then there is no amplitude or phase distortion
at the output. The only reconstruction error is aliasing, which
can be minimized by finding solutions with high stopband
attenuation.

Besides the above m constraints, h should also yield a
prototype filter with good stopband attenuation, i.e., & should
minimize

JSIS(m—l). mp =0

(40)

/ |H(e7)] dw

'S

(41)

and satisfy (30). The eigenfilter method [26], [27] represents
the above integral as a quadratic form (see Appendix B for
the details):

s
/ |H(e’“)|* dw = h'Ph. (42)
ws
Thus, the design problem can be stated as follows:
find h that minimizes h* Ph and satisties (40) where  (43)

K Wi2
[Pli=2) @-/ [cosw(k—1) + cosw(N —1—k—1){w.
i=1

Wi 1

0<kJdI<mM+m—1. (44)

Here, K is the number of stopbands of H(e/*),3; are their
relative weights, and w; ; and w; o are the bandedges of these
stopbands.

The above optimization problem can be solved very ac-
curately by the nonlinearity constrained minimization algo-
rithm of Schittkowski [28]-[29]. This minimization algorithm
is coded in the IMSL Math library [30] under subroutine
DNCONG. The DNCONG subroutine is used to generate all
examples in this paper.

D. The Design Method (Odd N)

In this section, we will describe the design method for the
odd N case, i.e., N = 2(mM + m;) + 1 where 0 < m; <
M — 1. Except for some modifications, the formulations in this
section are very similar to those in Section III-C. Defining h
and e(z) as follows,

h=[h(0) h(1) h(mM +ma)l' o
e(z) — [1 P Z—(mM+m1)]t7
then the prototype filter H(z) can be represented as
_pt e(z)
1) =0 D iy, ) @

where the dimensions of both I and J are (mM +my +1) X
(mM +mj +1). Using the above notation, the corresponding
2Mth band filter G(z) is

AmM+4m,

D

- H?Z)O: VU D))
(e!(z) z—<mM+m1>e*(z))(§)Vh

=h'V[U(2) + 2~ ™MI™)(JU(2) + U(2)J)
+ 272 MA™) JU (2) IV R

G(z) = g(n)z""

47

where U(z) is as in (35). Consequently, as similar to Section
III-C, G(z) can be expressed as follows:

dmM+4m, 4amM+4m,
Gz)= Y. gnz"= h‘V( > z‘”Dn> Vh
n=0 n=0
(48)

where D,, depends on S, and J as follows (see Appendix A
for details):

(VS,V;
0<n<mM+m; -1
V(S'n + -ISn—mM~m1 + Sn—mM—mlJ)V;
mM+m; <n<2(mM+my)—1
V(Samprr2m, +ISmt4my +Smsm, I+ IS0 IV
n = 2(mM + m1)
V(IS o My S nem My JH IS n —2mm —2m, WV
2AmM +m1) +1 < n < 3(mM +ma)
VJSn72mM72m1 JV7
3(mM +my) + 1 < n <4(mM +my).

49)

The objective is to find k such that G(z) is a 2Mth band
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filter, i.e.,
0;
gn=19_L.
2M’

Equating the terms with the same power of 2z~ % in (48) and
using (49) and (50), the following m constraints on h are

n = 2(mM +my) — 2IM,
n=2(mM + my).

1<I<m

(50)

R'VS,Vh =0;
LT + IJ <l<m
2 <i<

htV(Sn + JSn—m]\rl—ml + Snfm;’\l—m] J)Vh =0;
m

1<1<| %]

2

1
ht (S2m1\1+2m1+Jsm1¥l+mx+sm1\l+m‘J+JSOJ)Vh:m

(51

where n = 2M(m — 1) + 2m,.

Similar to the quadratic constraints (40) in Section III-C,
the conditions in (51) are another form of the 2Mth band
constraint on G(z). Using the similar eigenfilter formulation,
the design problem for the odd N case can be stated as
follows:

find h that minimizes h Ph and satisfies (51) where  (52)

[Ples =

K Wi 2
22[2/ [cosw(k — 1) + cosw(N =1 =k —1)] dw,
i=1

Wil

0< k0l <mM+m. (53)

Here, K is the number of stopbands of H(e/~).j; are
their relative weights, and w;; and w;» are the band-
edges of these stopbands. The design procedure is as
follows.

Design Procedure for the Novel Pseudo-QMF Bank:

1) Given m.mi, M, and wg. compute N = 2(mM + my)
or N = 2(mM + m;) + 1. depending on the choice of
N (even or odd), S, as in (36), and P as in (44) or (53).

2) Design an initialization low-pass filter H (%) approximat-
ing the frequency response in Fig. 1(c) using any filter
design algorithm. The eigenfilter method [26] is used in
this paper. From h as in (31) or (45) from the impulse
coefficient of H(z).

3) Compute the quadratic conditions (40) or (51) and
their gradients (to be used in DNCONG). Compute the
stopband error h°Ph and its gradient.

4) Call subroutine DNCONG to solve the quadratic-
constrained minimization problem in (43) or (52).
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5) From the output of DNCONG, find hy(n) and fr(n) as
in (23). Hi(z) and F}.(2) are the analysis and synthesis
filters of the novel pseudo-QMF bank. The overall
distortion function To(z) is a delay, and the aliasing
level is the same as the stopband attenuation of H(z).

Comments on the Design Procedure:

1) The nonlinear constrained minimization algorithm by
Schittkowski [28], [29] finds a solution vector h that
satisfies the m constraints in (40) or (51) up to a small
prescribed positive number 7, ie.,

|h*Snh| < n;
| 5] <ism-1)
|ht(Sn + JSn—mAI + SnfrnIV[J)hi S m
. (54)
1<1< [—J -1
2

1
|R (JSmpi—1 + Smarr—1J)h — T <n

for the even N case. Consequently, for smaller i, the
2Mth band condition is satisfied more closely, and &y is
smaller. Typically, < 1 x 1073 in the design method.

2) The constraints in (40) or (51) are quadratic in h;
therefore their gradients (to be used in the optimiza-
tion algorithm) are easy to compute. Even though the
stopband error of H (e’*) can take many forms such
as least squares (41) or minimax [32], the least-squares
representation is used since its gradient is simple to
compute.

IV. EXAMPLES

Example 1: In this example, a four-channel pseudo-QMF
bank is designed using the above method. Let m = 14,m; =
o.M = 4K = 1,[51 = 1.&}1,1 = 0.237r,w1,2 = T, and
n = 1x10713. The length of H(z) is chosentobe N = 112. P
is computed using numerical integration with 400 grid points.
The magnitude responses of the optimized prototype filter
H(z). the corresponding analysis filters Hi(z), the overall
distortion transfer function Tp(z). and the aliasing transfer
function t;(2).1 < 1 < M — 1 are plotted in Fig. 2(a)-(d),
respectively. Note that the stopband attenuation of H(z) and
H(z) is about —107 dB. Consequently, as shown in Fig.
2(d), the aliasing level is also about —107 dB. The magnitude
response of Tp(z) is plotted in Fig. 2(c) on an expanded
logarithmic scale. Here, 6; < 3.35 x 10~11 dB, which is very
small in normal scale. The above four-channel pseudo-QMF
bank was also simulated. The spectrum of the input signal
and the reconstructed error are plotted in Fig. 2(e) and (f),
respectively. In agreement with the theory, the output signal
#(n) approximates x(n) with —107 dB error.

Example 2: Tn this example, a 16-channel pseudo-QMF
bank is designed using the above method. Let m =
12.m; = OM = 16.K = 2,81 = 1.2.0; = 1.0,w11 =
0.0597, w12 = 0437m,w21 = 0.437,we2 = m, and
7 = 1x 10713, The length of H(z) is chosen to be N = 384. P
is computed using numerical integration with 400 grid points.
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(f) reconstruction error.

The magnitude responses of the optimized prototype filter
H(z), the corresponding analysis filters Hy(z), the overall
distortion transfer function Tp(z), and the aliasing transfer
functions T;(2),1 < | < M — 1 are plotted in Fig. 3(a)~(d),
respectively. Note that the stopband attenuation of H(z)
and Hp(z) is about —100 dB, except at the bandedges.
Consequently, as shown in Fig. 3(d), the aliasing level is
also about —95 dB. The magnitude response of Tp(z) is
plotted in Fig. 3(c) on an expanded logarithmic scale. Here,
8, < 1.8 x 10713 dB, which is very small in normal scale.
The above 16-channel pseudo-QMF bank is simulated with

the same input signal as in Example 1. The spectrum of
reconstructed error is plotted in Fig. 3(e). Here, the signal
#(n) approximates x(n) with —95 dB error.

V. CONCLUSION

A new algorithm to design a pseudo-QMF bank is presented.
The prototype filter is a linear-phase spectral factor of a
2 M th band filter. The analysis and synthesis filters are cosine-
modulated versions of the prototype filter. As a result, the
overall transfer function To(z) is a delay, and the alias level is
comparable to the stopband attenuation of the prototype filter.
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Fig. 3. (a) Example 2. Magnitude response of the optimized prototype filter H (

=): (b) magnitude response plots for the analysis filters Hi(=): (¢) magnitude

response plot for the overall distortion To(=): (d) magnitude response plots for the alias transfer functions T} (k): () reconstruction error.

A method to find the linear-phase spectral factor of a 2Mth
band filter without taking the spectral factor is also described.
This method relates the 2Mth band condition to a set of m
quadratic constraints in h, the impulse coefficients of H{(z).
These m quadratic constraints are minimized together with
the stopband error of H(z), and yield a prototype filter with
—100 dB attenuation. Moreover, the m quadratic constraints
are satisfied with error n < 1 x 10713,

Two pseudo-QMF banks were designed using this novel al-
gorithm. The reconstruction error of the four-channel pseudo-
QMF banks was about —107 dB whereas the stopband at-
tenuation of the analysis and synthesis filters was also about
—107 dB. The second design example concerned a 16-channel

pseudo-QMF bank. The resulting reconstruction error was
—95 dB, while the stopband attenuation of the analysis and
synthesis filters were also about —95 dB. Both pseudo-QMF
banks were simulated with the same input. In agreement with
the theory, the reconstruction errors were —107 and —95 dB,
respectively, for the four-channel and 16-channel pseudo-QMF
banks.

APPENDIX A

In this Appendix, the relation among D,,S,, and J is
derived.
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e Even N (N = 2(mM + m1))
From Section III-C and (36),

AmM+4m | ~2

Gz = Y g
n=0
2mM+42m, —2
_ht‘: z—nsn + ZA(mI\I+m1)
n=0

2mM+2m,—2 2mM+2m, —2
J E 2z "S, + E

n=0 n=0

. z‘"S,J)

4 p2mMEmy) g

4mM -2
= hf( Z z‘"Dn) h

n=0

2mM+2m, —2

2

n=0

z‘”SnJ}h
(A.1)

Grouping the like powers of 27!, (A.1) becomes

mM+m;—1 2mM+2m, —2
Gz)=h'{ > 2Sa+ Y
n=0 n=mM+m,;

. Zﬁn(sn + JSn—mIW-—ml + Sn—m}\/I—mlJ)

+ Z_(Zm]w+2ml_1)(JSmI\I+m1—1 + Smf\1+ml—1J)
3ImM+3m, —2
-2
n=2mM+2m,
+ JSn_omnr—2m,J)
AmM4+4m,—2
>

n=3mM+3m,; ~1

Z—n(JSn—mI\I—-ml + Sn—mAI—m1 J

Z_n']sn—2m}\!—2m1 J}h (Az)

From the above two equations, D,, is as shown in n (38).

e Odd N(N =2(mM +my) +1)
From Section III-D and (46)

dAmA+4m,

>

n=0

2mM+2m,
=h'V

G(2) = g(n)z™"

Z—-nsn + Z—(m!\l—%ml)

>

n=0

2mM+2m, 2mM+2m,
-(J Yoo o2TS Y z“"SnJ>

n=0 n=0
2mM+2m,

+ Zv2(7n1\1+m1)J Z

n=0

dmM+4m,
= hfv( Z z‘"Dn> Vh.

n=0

z"‘SnJ] Vh

(A.3)

Grouping the like powers of 271, (A.3) becomes

mM+m;—1 2(mM+my)—1
oer=nv] S s Y
n=0 n=mM+m,

’ Z_n(S'n + JSn—mAIfml + Sn—m}\lfmlj)

—2(mAl;
+z (m Zml)(SQm]\I_Q_le + JS171A’1+m1

+ SmMtm, J + JS()J)
3(mM+m,)
DS
n=2(mM+m,;)+1
+ Sncmrt—myJ + ISn_2mrr—2m,J)
4(mM+m,)
+ Z Z_HJSn72mA172m1] Vh.
n=3(mAM+m;)+1

Z_n(-]Sn—mJ\I-ml

(A.4)

From the above two equations, I),, is as shown in (49).

APPENDIX B
The stopband error of H(z) is defined to be

.
es = Zﬂi/
im1

w2
Wil

|H(e/)? dw

K Wi
= Zﬂf/ H(e™)YH* (/%) dw (B.1)
=1 el

where K is the number of stopbands, J3; are their relative
weighting, and w;; and w; 2 are the bandedges of these
stopbands. We will express es in a quadratic form below.

e Fven N

Using the notation in (33) for H(z).es becomes

5 _ht = 3 s I J e(ejw)
€s = 21/1 " ( ) C_](’TIAI+7T7'1)“}€(€jw)

-(é((i‘j“’) e](7714\1+7711)u}é(8].~'))<‘II> dwh. (B.2)

Simplifying the above expression,

K i
€s :ht Zﬂ,/
=1

&il

(e(e/*)e(e’™)

+ e_j(m4\1+n11)u.‘Je(ejvd)é(ej“’)
+ ej(m;'\[-Hnl)W'e(ej“’)é(gj”)‘]

+ Je(e?)e(e?*)J) dwh. (B.3)

The matrix P can be extracted from the above equation, i.e.,

K Wi
P=> j (e(e?)e(e?™)
>

Wil
+ G-j(m,M—Q—ml)u;Je(er)é(ejw)
+ 6j(1m\1+m1)..;e(e_j.u)é(eju;)J

+ Je(e?*)e(e!*) ) dw. (B.4)
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This matrix P is a real, symmetric, and positive definite matrix.
Its elements are

K ws
[Pkt 222@/ [cosw(k—1)+cosw(N—1 —k—1)] dw,
i=1

Wi,

0<kIl<mM+m;—1. (B.5)

Thus, given N and wg, one can compute P from the above
expression. In the example, P was evaluated using numerical
integration with 400 grid points.

e Odd N

Using the notation in (46) for H(z),es becomes

ot = oz e(e’)
es =h VZﬂi/ T J eI (mMimi)we(eiv)
=1

Wi, 1

- (&(e™) ef<mM+'"1>wé(eJ‘w))(5)dwh. (B.6)

Simplifying the above expression similarly to the above odd
case, we obtain

es = htPh

where

K ws
[Pk =2uZﬁ¢/ [cosw(k—1)+cosw(N—1—k—1)] dw,

i=1 w1

0<k,1<mM+m (B.7)
and

1, 0<kl<mM+my—1

, k=mM+m,0<I<mM+m —1
v= l=mM+m,0<k<mM+m; -1 (B.8)

, k=l=mM+m;.

P Y W e

Thus, given N and wg, one can compute P from the above
expression.
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