Slijepo razdvajanje signala analizom nezavisnih komponenata

Ivica Kopriva

9. studenog 2007.

Sadržaj

- Što je slijepo razdvajanje signala: ICA vs. PCA
- Linearni statički problem
- Linearni dinamički problem

Knjige, Web stranice,	
 2004. A Hyvarinen, J. Karhunen, E. Oja, "Independent Component Analysis," John Wiley, 2001. A Dependent Component Analysis, "Independent Component Analysis," John Wiley, 2001. 	
A. Cichocki, S. Aman, Adaptive Blind Signal and Image Processing, John Wiley, 2002.	
<u>Konferencije:</u> ❑ January, 1999, Aussois, France	http://sig.enst.fr/~cardoso/
June, 2000, Helsinki, Finland	http://www.cis.hut.fi/
December, 2001, San Diego, USA	http://www.cnl.salk.edu/
🗖 April, 2003, Nara, Japan	http://www.kecl.ntt.co.jp/icl/signal/ica2003/
September, 2004, Granada, Spain	http://atc.ugr.es/ica2004/
□ March 2006, Charlstone, NC, USA	http://www.cnel.ufl.edu/ica2006/

Što je slijepo razdvajanje signala?

Zamislite situaciju u kojoj su signali s dva mikrofona težinske kombinacije dva signala emitirana od govornika i pozadinskog šuma.

$$x_1 = a_{11}s_1 + a_{12}s_2$$

 $x_2 = a_{21}s_1 + a_{22}s_2$

Problem se sastoji u procjeni govornog signala (s_1) i šuma (s_2) iz snimljenih signala x_1 i x_2.

Kada bi težinski koeficijenti $a_{11},\,a_{12},\,a_{21}$ i a_{22} bili poznati problem bi se riješio običnom matričnom inverzijom.

ICA omogućava procjenu govornog signala (s,) i šuma (s₂) bez poznavanja težinskih koeficijenata a₁₁, a₁₂, a₂₁ i a₂₂. Zbog toga se problem rekonstrukcije izvornih signala s₁ i s₂ naziva problemom s*lijepog razdvajanja signala*.

Problem rekonstrukcije vektora izvornih signala s iz statičke:

Ili dinamičke okoline X=A*S

$$=\sum_{m=1}^{M}\sum_{k=0}^{K}a_{mm}(k)s_{m}(t-k) \qquad K-\text{red}$$

koristeći samo vektor mjerenja **x** te minimalan broj *a priornih* informacija o izvornim signalima.

¹Ch. Jutten, J. Herault, "Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture", Sig. Proc., 24(1):1-10, 1991.

filtera?

Uvjeti za ICA ?

izvorni signali s_i(t) moraju biti statistički nezavisni.

$$\mathbf{p}(\mathbf{s}) = \prod_{m=1}^{m} p_m(s_m)$$

izvorni signali s_m(t), osim najviše jednoga, moraju biti ne-Gaussovi.

$$C_n(s_m) \neq 0 \quad n > 2$$

$$p_m(s_m) \neq \frac{1}{\sqrt{2\pi}\sigma_m} \exp\left(-\frac{s_m(t)}{2\sigma_m^2}\right)$$

□matrica miješanja A mora biti ne-singularna (detA≠0).

$$W \cong A^-$$

Poznavanje fizikalne interpretacije matrice miješanja ponekad ima veliku važnost.

Neodređenosti ICA transformacije ?

a) Varijanca (energija) nezavisnih komponenata ne može se odrediti. To se naziva neodređenost skaliranja. Razlog je u tome da kada su S i A nepoznati bilo koji skalarni multiplikator s jednim od izvora se može poništiti dijeljenjem odgovarajućeg stupca matrice A istim multiplikatorom:

$$\mathbf{X} = \sum_{m} \left(\frac{1}{\alpha_{m}} \mathbf{a}_{m} \right) (s_{m} \alpha_{m})$$

 b) Poredak nezavisnih komponenata se ne može odrediti. To se naziva permutacijskom neodređenosti. Razlog je da se komponente izvornog vektora s i stupci matrice miješanja A mogu slobodno zamijeniti tako da bude

X=AP-1PS

gdje je P permutacijska matrica, PS je novi izvorni vektor s originalnim komponentama ali u drugačijem poretku, a AP-1 je nova nepoznata matrica miješanja.

Kako radi ICA ?

Zašto su Gaussove varijable *zabranjene*? Centralni granični teorem tvrdi da je statistička raspodjela linearne kombinacije x slučajnih procesa s₁ i s₂ bliža Gaussovoj raspodjeli nego su to raspodjele procesa s₁ i s₂.

Jedan od načina da se izvede algoritam slijepog razdvajanja signala metodom analize nezavisnih komponenata, pronalaženje matrice **W**, je da se maksimizira mjera udaljenosti od Gaussove raspodjele.

Pretpostavimo da su dvije nezavisne komponente komponente s, i s₂ Gaussove. Njihova združena funkcija gustoće raspodjele vjerojatnosti dana je sa

$$p(s_1, s_2) = \frac{1}{2\pi} \exp\left(-\frac{s_1^2 + s_2^2}{2}\right) = \frac{1}{2\pi} \exp\left(-\frac{\|\mathbf{s}\|^2}{2}\right)$$

Kako radi ICA ?

Pretpostavimo da su izvorni signali miješani s ortonormalnom matricom miješanja tj. A·1=A⁺. Njihova združena funkcija gustoće raspodjele vjerojatnosti dana je sa

$$p(x_1, x_2) = \frac{1}{2\pi} \exp\left(-\frac{\left\|\mathbf{A}^{\mathsf{T}}\mathbf{x}\right\|^2}{2}\right) |\det \mathbf{A}^{\mathsf{T}}| = \left\|\mathbf{A}^{\mathsf{T}}\mathbf{x}\right\|^2 = \|\mathbf{x}\|^2 i |\det \mathbf{A}| = 1$$
$$= \frac{1}{2\pi} \exp\left(-\frac{\|\mathbf{x}\|^2}{2}\right)$$

Distribucije originalnih i miješanih signala su identične → ne postoji način na koji se može procijeniti matrica miješanja iz miješanih signala.

Maksimizacija udaljenosti od Gaussove raspodjele nema smisla!!!

Kako radi ICA ?

Da bi se pokazao princip rada ICA razmotrit ćemo dva nezavisna uniformno distribuirana signala s, i s₂. Scatter dijagram (grafička ilustracija združene funkcije gustoće raspodjele vjerojatnosti) na lijevoj slici pokazuje nepostojanje redudancije između njih, tj. ne može se steći nikakvo znanje o s₂ poznavajući s₁.

Desna slika prikazuje dva miješana signala dobivena prema **x=AS**, gdje je **A=[5 10;10 2].** Očigledno postoji zavisnost između x₁ i x₂. Poznavajući maksimum ili minimum od x₁ omogućava da se pogodi x₂ → **A** se može procijeniti. No, što se događa kada izvorni signa maju različite statistike?

Kako radi ICA ?

Razmotrimo dva nezavisna izvorna signala s, i s₂ generirana kamionskim i tenkovskim motorima. Scatter dijagram na lijevoj slici pokazuje da ne postoji redudancija između izvornih signala tj. na temelju informacija o s₁ ne može se predvidjeti s₂. No distribucije nisu uniformne nego su *rijetke*. Desna slika prikazuje miješane signale dobivene prema X=AS gdje je A=[5 10;10 2]. Očigledno je da postoji zavisnost između x₁ 1x₂. No bridovi su ovaj put na drugim mjestima. Procjena A iz scatter dijagrama bila bi vrlo nepouzdana. ICA to može napraviti za različite statistike izvornih signala ne znajući ih unaprijed.

PCA i ICA

• Da bi se izdvojili izvorni signali (slike) potrebno je minimizirati statističku nezavisnost između mjerenih signala x_1 i x_2 .

• Prvi korak je minimizacija statističke zavisnosti drugog reda tj. dekorelacija x $_1$ i x $_2$. To se radi sa PCA transformacijom.

Drugi korak je minimizacija statističke zavisnosti višeg reda.
 To se radi s ICA transformacijom. To ima smisla samo ako su signali od interesa ne-Gaussovi.

Prostorno i vremenski nezavisni procesi

Procesi x, i x, su prostorno nezavisni ako važi:

 $p(x_i x_j) = p(x_i) p(x_j) \cong E[x_i x_j] = E[x_i] E[x_j] \quad \forall i \neq j$

Proces x je vremenski nezavisan ako važi:

 $p(x(t)x(t+\tau)) = p(x(t))p(x(t+\tau))$

 $\cong E[x(t)x(t+\tau)] = E[x(t)]E[x(t+\tau)] \quad \forall \tau \neq 0$

ICA vs. PCA

Analiza glavnih komponenata (PCA) i dekorelacija signala. PCA je transformacija koja se upotrebijava za dekorelaciju viševarijabilnih skupova podataka. PCA se u kombinaciji s ICA vrlo često koristi kao prvi korak nakon čega viševarijabilni skup podatak postaje *prostorno* dekoreliran s jediničnom varijancom. PCA transformacija se projektiraju na temelju svojstvene dekompozicije matrice kovarijance od X:

$$\mathbf{R}_{\mathbf{x}\mathbf{x}} \approx \left(1/T\right) \sum_{t=1}^{T} \mathbf{x}(t) \mathbf{x}^{\mathrm{T}}(t)$$

Podrazumijeva se da podaci x imaju nultu srednju vrijednost. To se lako postiže sa x \leftarrow x- E{x}. Svojstvena dekompozicija R_{xx} se dobije kao

$$\mathbf{R}_{\mathbf{x}\mathbf{x}} = \mathbf{E}\mathbf{\Lambda}\mathbf{E}^{\mathrm{T}}$$

gdje je E matrica svojstvenih vektora a Λ je dijagonalna matrica svojstvenih vrijednosti matrice $R_{xx}.$

ICA vs. PCA

PCA transformacija se dobije kao

$$\mathbf{z} = \mathbf{V}\mathbf{x} = \mathbf{\Lambda}^{-1/2}\mathbf{E}^{\mathrm{T}}\mathbf{x}$$

Pri čemu se lagano verificira

$$E\left[\mathbf{z}\mathbf{z}^{\mathrm{T}}\right] = E\left[\mathbf{\Lambda}^{-1/2}\mathbf{E}^{\mathrm{T}}\mathbf{x}\mathbf{x}^{\mathrm{T}}\mathbf{E}\mathbf{\Lambda}^{-1/2}\right] = \mathbf{\Lambda}^{-1/2}\mathbf{E}^{\mathrm{T}}E\left[\mathbf{x}\mathbf{x}^{\mathrm{T}}\right]\mathbf{E}\mathbf{\Lambda}^{-1/2}$$
$$= \mathbf{\Lambda}^{-1/2}\mathbf{E}^{\mathrm{T}}\mathbf{E}\mathbf{\Lambda}\mathbf{E}^{\mathrm{T}}\mathbf{E}\mathbf{\Lambda}^{-1/2} = \mathbf{\Lambda}^{-1/2}\mathbf{\Lambda}\mathbf{\Lambda}^{-1/2} = \mathbf{I}$$

ICA vs. PCA

Scatter dijagrami dva nekorelirana Gaussova signala (lijevo); dva korelirana signala dobivena kao linearna kombinacija dva nekorelirana Gausova signala (centar); dva signala nakon PCA transformacije (desno).

ICA za linearna statički problem

Maksimizacija udaljenosti od Gaussove raspodjele

Maksimizacija udaljenosti od Gaussove raspodjele

Centralni granični teorem tvrdi da je statistička raspodjela linearne kombinacije $x_r = a_{r_1}s_r + a_{r_2}s_2$ slučajnih procesa s₁ i s₂ bliža Gaussovoj raspodjeli nego su to raspodjele procesa s₁ i s₂.

Jedan od načina da se izvede algoritam slijepog razdvajanja signala metodom analize nezavisnih komponenata, pronalaženje matrice \mathbf{W} , je da se maksimizira mjera udaljenosti od Gaussove raspodjele.

Slučajni procesi se klasificiraju na super-Gaussove, Gaussov i sub-Gaussove prema vrijednosti parametra zvanog *kurtozis.* Za slučajni proces x sa nultom srednjom vrijednošću *kurtozis* je definiran sa

$$\begin{split} & \textbf{Maksimizacija udaljenosti od Gaussove raspodjele} \\ & \textbf{Pretpostavimo da je vektorski slučajni proces Z standardiziran (nulta srednja vrijednost i jedinična varijanca). Izvorni signal <math>s_m$$ se dobije kao $& \textbf{s}_m = \textbf{wZ} \\ & \textbf{Kurtozis slučajnog procesa } s_m je \\ & \kappa(s_m) = E[(s_m)^4] - 3 \\ & \textbf{Vektor razdvajanja w se dobije kao rješenje optimizacijskog problema \\ & J(\textbf{w}) = \max_{\textbf{w}} \left\{ |\kappa(s_m)| \right\} = \max_{\textbf{w}} \left\{ |\kappa(\textbf{w}^T \textbf{Z})| \right\} \\ & \Delta \textbf{w} = \frac{\partial |\kappa|}{\partial \textbf{w}} = \text{sign}(s_m) \quad \frac{\partial E((\textbf{w}^T \textbf{Z})^4)}{\partial \textbf{w}} = 4 \text{ sign}(s_m) E(s_m^3 \textbf{Z}) \\ & \textbf{Da bi varijanca signala } s_m ostala jedinična potrebno je normalizirati \Delta \textbf{w pri svakom koraku adaptacije} \\ & \textbf{w} \leftarrow \frac{\Delta \textbf{w}}{\|\Delta \textbf{w}\|} \end{split}$

Maksimizacija udaljenosti od Gaussove raspodjele

Prije izdvajanja novog izvornog signala potrebno je iz mjerenih podataka Z eliminirati već izdvojene izvorne signale:

$$\mathbf{W} = \left[\mathbf{w}_1 \mathbf{w}_2 \cdots \mathbf{w}_{p-1}\right]$$

$$\hat{\mathbf{Z}} \leftarrow \left(\mathbf{I} - \mathbf{W}(\mathbf{W}^T \mathbf{W})^{-1} \mathbf{W}^T\right) \mathbf{Z}$$

ICA za linearna statički problem

Informacijsko-teorijska ICA

Informacijsko-teorijska ICA

ICA metodom maksimalne vjerojatnosti (MV)⁴. Vjerojatnost ICA modela bez šuma x=As se formulira kao:

 $p_x(\mathbf{x}) = |\det \mathbf{W}| p_s(\mathbf{s}) = |\det \mathbf{W}| \prod p_m(s_m)$

gdje **W=[w**, w₂ ... w_N]=A⁻¹. MV znači da želimo maksimizirati vjerojatnost da su podaci x dobiveni sa modelom x=As. Budući je s_m=w_m^Tx, $p_x(x)$ se može napisati kao:

 $p_x(\mathbf{x}) = |\det \mathbf{W}| \prod p_m(\mathbf{w}_m^{\mathrm{T}} \mathbf{x})$

*D. T. Pham, "Blind separation of mixtures of independent sources through a quasimaximum likelihood approach," IEEE Trans. Signal Processing 45, pp. 1712-1725, 1997.

Informacijsko-teorijska ICA

Vjerojatnost L(W) se procjenjuje preko T mjerenja kao:

$$L(\mathbf{W}) = \prod_{m=1}^{T} \prod_{m=1}^{M} p_m(\mathbf{w}_m^{\mathrm{T}} \mathbf{x}(t)) \left| \det \mathbf{W} \right|$$

Normalizirana log-vjerojatnost se dobije kao:

$$\frac{1}{r}\log L(\mathbf{W}) = E\left\{\sum_{m=1}^{M}\log p_m(\mathbf{w}_m^{\mathsf{T}}\mathbf{x}(t))\right\} + \log\left|\det \mathbf{W}\right|$$

Gradijent log-vjerojatnosti daje:

$$\Delta \mathbf{W} = \frac{1}{T} \frac{\partial \log L}{\partial \mathbf{W}} = \left[\mathbf{W}^{\mathrm{T}} \right]^{-1} - E \left\{ \varphi(\mathbf{W} \mathbf{x}) \mathbf{x}^{\mathrm{T}} \right\}$$

Informacijsko-teorijska ICA

gdje se nelinearnost $\varphi(y_i)$ naziva score funkcijom danom sa

$$\varphi_i = -\frac{1}{p_i} \frac{dp_i}{dy_i}$$

Euklidov gradijent se mora korigirati tenzorom WTW5.6 što daje batch MV ICA algoritam:

 $\mathbf{W}(k+1) = \mathbf{W}(k) + \eta \Big[\mathbf{I} - E \Big\{ \varphi(\mathbf{y}) \mathbf{y}^{\mathrm{T}} \Big\} \Big] \mathbf{W}(k)$

Adaptivan MV ICA algoritam se dobije ispuštanjem matematičkog očekivanja:

 $\mathbf{W}(t+1) = \mathbf{W}(t) + \eta \left[\mathbf{I} - \varphi(\mathbf{y}(t))\mathbf{y}(t)^{\mathrm{T}} \right] \mathbf{W}(t)$

YS Amari, "Natural gradient works efficiently in learning," Neural Computation 10(2), 251-276, 1998. U.F. Cardoso and B.Laheld, "Equivariant adaptive source separation," IEEE Trans. on Signal Proc. 44(12), 3017-8030, 1996.

"Prirodni" gradijent

Parametarski prostor kvadratnih matrica ima Riemannovu geometriju. Euklidov gradijent skalarne funkcije J s matričnim argumentom W ne pokazuje u smjeru najbrže promjene funkcije J. Euklidov gradijent je potrebno korigirati s članom W^TW da bi se dobio gradijent prirodan za parametarski prostor kvadratnih matrica.

$PG(J(\mathbf{W})) = (\partial J(\mathbf{W})/\partial \mathbf{W}) \mathbf{W}^{\mathrm{T}}\mathbf{W}$

Informacijsko-teorijska ICA

Optimalni izbor nelinearnosti $\varphi(y)$ ovisi o nepoznatoj raspodjeli signala. Fleksibilna nelinearnost koja je dobra za široki spektra distribucija može se izvesti iz poopćene Gaussove raspodjele^{7,8}:

$$p_i(y_i) = \frac{\theta_i}{2\sigma_i \Gamma(1/\theta_i)} \exp\left(-\frac{1}{\theta_i} \left|\frac{y_i}{\sigma_i}\right|^{\theta_i}\right)$$

S jednim parametrom θ_i (Gaussov eksponent) mogu se modelirati super-Gaussove raspodjele ($\theta_i < 2$) i sub-Gaussove raspodjele($\theta_i > 2$).

⁷S. Choi, A. Cichocki, S. Amari, "Flexible Independent Component Analysis," Journal VLSI, KAP, 2000. ⁴L. Zhang, A. Cichocki, S. Amari, "Self-adaptive Bill Source Separation Based on Activation Function adeptation," *IEEE Tran. On Neural Networks*, vol. 15, No. 2, pp. 233-244, March, 2004.

Informacijsko-teorijska ICA

Ako se poopćena Gaussova raspodjela supstituira u izraz sa score funkciju dobije se:

$$\varphi_i(y_i) = sign(y_i) |y_i|^{\theta_i - 1}$$

Ako je raspoloživo a priorno znanje o statističkoj raspodjeli izvornih signala θ_i se može fiksirati unaprijed.

Na primjer ako su izvorni signali govor ili glazba θ_i se može postaviti na θ_i =1, zbog toga što govor i glazba spadaju u klasu super-Gaussovih signala.

Ako su izvorni signali komunikacijski signali θ_i se može postaviti na θ_i =2.5 ili θ_i =3, zbog toga što su komunikacijski signali sub-Gaussovi.

Alternativa je da se θ_i procjenjuje adaptivno iz samih podataka⁷.

Informacijsko-teorijska ICA

U Ref.[9] je predložen pristup procjeni score funkcije iz podataka. Temelji se na procjeni funkcije gustoće raspodjele vjerojatnosti koristeći estimator sa Gaussovom jezgrom.

$$\hat{p}_i(y_i(t), \mathbf{y}_i) = \frac{1}{T} \sum_{n=1}^T G\left(y_i(t) - y_i(tt), \sigma^2 \mathbf{I}\right)$$
$$\frac{d\hat{p}_i(y_i)}{dy_i} = -\frac{1}{T} \sum_{n=1}^T \frac{y_i(t) - y_i(tt)}{\sigma^2} G\left(y_i(t), \sigma^2 \mathbf{I}\right)$$
$$G\left(y_i(t), \sigma^2 \mathbf{I}\right) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{y_i^2(t)}{2\sigma^2}\right)$$

^eS J.C. Principe, D. Xu and J.W. Fisher, "Information-Theoretic Learning," *Chapter 7* in *Unsupervised Adaptive Filtering- Volume I Blind Source Separation*, ed. S. Haykin, J. Wiley, 2000.

Ostali ICA algoritmi za statički problem

Informacijsko-terorijski pristup¹⁰⁻¹²

- Tenzorske metode (Kumulanti četvrtog reda)¹³
- Vremenski zakašnjele korelacije¹⁴⁻¹⁷
- Kernel ICA algoritam¹⁸

- ♦ Kernel ICA algoritam¹⁸
 *A, Hyarinen and E. Ola, 'A fast fixed-point algorithm for independent component analysis,"
 •kural Computation, vol. 9, pp. 1483-1492, 1997.
 *A. J. Bell and T. J. Sejnowski, "An information-maximization approach to blind separation and blind secondultion," Neural Computation vol. 7, 129-1156, 1996.
 *D. Erdogmus, K. E. Hild II, Y. N. Rao and J. C. Principe, "Minimax Mutual Information Approach for Independent computation vol. 7, 129-1156, 1996.
 *D. Erdogmus, K. E. Hild II, Y. N. Rao and J. C. Principe, "Minimax Mutual Information Approach for Independent computation vol. 7, 169-436, pp. 1235-1252, June, 2004.
 *J. Moigedey and H. G. Schuster, "Separation of mixture of independent signals using time delayed correlations," *Physical Review Letters*, vol. 72, pp. 363-4368, 1994.
 *J. Tong, R.V. Lu, V.C. Soon, and Y. F. Huang, "Indeterminacy and identifiability of blind identification," *IEEE Trans. on Circuits and Systems*, 38499-6090, 1991.
 *A. Zehe, K.R. Muller, G. Nolte, B. M. Mackert, and G. Cuin, "DISEP-an efficient algorithm for blind separation using time structure," *Proc. ICANV98*, pp. 675-680, Skovde, Sweden, 1998.
 *F. R. Bachan M. I. Jordan 'Kernel Independent Component Analysis," *Journal of Machine Learning Research* 8, pp. 148, 2002.

Neki zanimljivi linkovi

ICALAB programski paket-RIKEN Brain Science Institute (Tokyo, Japan): http://www.bsp.brain.riken.jp/ICALAB/ICALABSignalProc/

MATLAB kod za FastlCA algoritam (Helsinki University of Technology, Helsinki, Finska): http://www.cis.hut.fi/projects/ica/fastica/ .

MATLAB kod za kernel-ICA algoritam (UC Berkley, SAD): http://www.cs.berkeley.edu/~fbach/kernel-ica/

MATLAB kod za JADE algoritam (ENST, Paris, Francuska) : http://www.tsi.enst.fr/~cardoso/Algo/Jade/jade.m

ICA za linearna dinamički problem

rješenje problema slijepog razdvajanja signala u konvolucijskim sustavima

Dinamički problem

U mnogim situacijama u području akustike i komunikacija primljeni signali su superpozicije višestrukih refleksija nepoznatih izvornih signala.

Taj fenomen je poznat pod popularnim nazivom *cocktail- party* problem.

Dinamički problem se može opisati matricom miješanja čiji su elementi prijenosne funkcije između pojedinačnih izvora i senzora.

Kada su i matrica prijenosnih funkcija i izvorni signali nepoznati problem se naziva višekanalnom slijepom dekonvolucijom (VSD)¹⁹⁻²².

**A. Hyvarinen, J. Karhunen and E. Oja, *Chapter 19* in Independent Component Analysis, J. Wiley, 2001.
**A. Cichocki, S. Amari, *Chapter 9* in Adaptive Blind Signal and Image Processing – Learning Algorithms and Applications, J. Wiley, 2002.
*R. H. Lambert and C.L. Nikias, *Chapter 9* in Unsupervised Adaptive Filtering – Volume I Blind Source Separation, S. Haykin, ed., J. Wiley, 2002.
*S.C. Douglas and S. Haykin, *Chapter 3* in Unsupervised Adaptive Filtering – Volume II Blind Deconvolution, S. Iaykin, ed., J. Wiley, 2000.

Dinamički problem

Konvolucijski model za sustav 2x2: $x_j(n) = \sum_{k=1}^{\infty} \sum_{j=1}^{k} a_{jm}(l) s_m(n-l)$ m = 1, 2

Dinamički problem

Visekanalna slijepa dekonvolucija

Problem jednokanalne slijepe dekonvolucije još je poznat pod nazivom slijepa ekvalizacija.

U rekonstrukcji audio signala rješenje slijepe separacije je dovoljno. Zbog obojenih statistika audio signala potpuna dekonvolucija nije poželjna jer mnogi algoritmi imaju učinak bijeljenja spektra, što uništava integritet signala.

U višekanalnim komunikacijskim sustavima i separacija i dekonvolucija su nužne. Kako su komunikacijski signali aproksimativno i.i.d. procesi, problem slijepe dekonvolucije je lakše rješiv.

Dinamički problem

Višekanalno slijepo inverzno modeliranje, ekvalizacija i razdvajanje. Ulazni signal je nepoznat te nema referentnog ili željenog signala.

U odnosu na statički problem, elementi matrice miješanja **A** u konvolucijskom modelu su filtri *a*_{ij}. Oni sadrže impulsne odzive između *j*^{log} ulaza i *i*^{log} izlaza. Mi ćemo zbog jednostavnosti pretpostaviti da je broj izlaza i ulaza isti i jednak N.

Dinamički problem

Notacija. NxN matrica miješanja je opisana kao:

$$\mathbf{A}(z) = \sum_{n=-\infty}^{\infty} \mathbf{A}_n z^{-n} = \left[a_{ij}(z) \right]$$
$$a_n(z) = \sum_{n=-\infty}^{\infty} a_{in} z^{-n} \quad i, j = 1...N.$$

Podrazumijeva se da je svaki kanal stabilan, tj. $\sum_{n=-\infty}^{\infty} |a_{ij,n}| < \infty$.

A(z) je matrica polinoma ili matrica Laurentovih razvoja u red.

 $\mathbf{A}_{\rm n}$ je koeficijent matričnog polinoma ili koeficijent matričnog Laurentovog razvoja.

Dinamički problem

Dinamički (konvolucijski) model u Zdomeni:

 $\mathbf{x}(z) = \mathbf{A}(z)\mathbf{s}(z)$ gdje su izvorni, mjereni i rekonstruirani signali opisani dvostranom Z transformacijom:

 $s_{i}(z) = \sum_{n=\infty}^{\infty} s_{i,n} z^{-n}$ $x_{i}(z) = \sum_{n=-\infty}^{\infty} x_{i,n} z^{-n}$ $y_{i}(z) = \sum_{n=-\infty}^{\infty} y_{i,n} z^{-n} \quad i = 1...N$

Inverzni sustav je opisan sa:

$$\begin{split} \mathbf{W}(z) &= \sum_{n=-\infty}^{\infty} \mathbf{W}_n z^{-n} = \left[w_{ij}(z) \right] \\ & w_{ij}(z) = \sum_{n=0}^{\infty} w_{ij,n} z^{-n} \quad i, j = 1 ... N \end{split}$$

Dinamički problem

Realni kanali su kauzalni s konačnim redom L

$$\mathbf{A}(z) = \sum_{n=0}^{L} \mathbf{A}_{n} z^{-n} = \left[a_{ij}(z) \right]$$

Red kanala se mora procijeniti, a u vezi je s maksimalnim kašnjenjem $\tau_{\rm max}$ koje se može desiti u tzv. multipath scenariju:

$$L \ge \tau_{\max} F_s$$

gdje F_s predstavlja frekvenciju otipkavanja. Međutim, **nekauzalna** reprezentacija je nužna za modeliranje **inverza neminimalno faznih (NMF)** kanala:

$$\mathbf{V}(z) = \sum_{n=-L} \mathbf{W}_n z^{-n} = \left\lfloor w_{ij}(z) \right\rfloor$$
$$v_{ij}(z) = \sum_{n=-L}^{L} w_{ij,n} z^{-n} \quad i, j = 1...$$

Dinamički problem

Rekonstruirani signali se dobiju kao:

$$\psi_i(t) = \sum_{i=1}^{N} \sum_{l=-L}^{L} w_{ij}(l) x_j(l-l) \quad i = 1...N$$

Nekauzalna implementacija inverznih sustava zahtjeva da mjereni signali budu poznati **unaprijed u vremenu** (prije nego su se stvarno dogodili). Kako to nije pstvarivo, uvodi se linija za kašnjenje od *L* uzoraka čime se realizira nekauzalna mplementacija:

$$w_i(t-L) = \sum_{j=1}^{N} \sum_{l=-L}^{L} w_{ij}(l) x_j(t-L-l)$$
 $i = 1...N$

To ima za posljedicu kašnjenje od *L* uzoraka nezavisno od toga da li se radi s adaptivnim ili blok-adaptivnim implementacijama.

Dinamički problem

Zašto stabilan inverz NMF sustava zahtjeva ne-kauzalnu implementaciju?

Razmotrimo prijenosnu funkciju prvog reda:

$$w_{ij}(z) = \frac{1}{1 - az^{-1}}$$

za neki realan a. Smatra se da je $w_{ij}(z)$ inverz direktnog filtra $a_{ij}(z)=1-az^{-1}$. Područje konvergencije (PK) je dano sa:

Pretpostavimo |a| < 1. Tada polovi $w_{ij}(z)$ leže unutar jedinične kružnice za $z=exp(j\omega)$, te se $w_{ij}(z)$ može reprezentirati kauzalnom (jednostranom) z-transformacijom:

$$w_{ij}(z) = \frac{1}{1 - az^{-1}} = \sum_{n=0}^{\infty} a^n z^{-n}$$

Dinamički problem

Pretpostavimo sada da je |a|>1. Tada polovi $w_y(z)$ leže izvan jedinične kružnice za $z=\exp(j_0)$. U tom slučaju područje konvergencije postaje

|z| < |a|

Sekvenca sa z-transformacijom $w_{ij}(z)=1/(1-az^{-1})$ i gornjim područjem konvergencije je dana sa:

$$w_{ij}(n) = -a^n u(-n-1)$$

gdje u() predstavlja step funkciju. z-transformacija od w_{ij}(n) se sada dobije kao:

$$W_{ij}(z) = \sum_{n=-\infty}^{\infty} W_{ij}(n) z^{-n} = \sum_{n=-\infty}^{\infty} -a^n u(-n-1) z^{-n} = -\sum_{n=-\infty}^{-1} a^n z^{-n}$$

što predstavlja **stabilnu** (1/ | *a* |)<1 ali **ne-kauzalnu** implementaciju inverza NMF kanala *a_g(z)=1-az⁻¹*.

Jednokanalna slijepa dekonvolucija

Matematička formulacija:

$$y(t) = \sum_{l=-L}^{L} w_l x(t-l)$$
$$x(t) = \sum_{l=-L}^{L} a_l s(t-l)$$

Pretpostavke:

Preposave. P1) Izvorni signali moraju biti ne-Gaussovski. Zbog centralnog graničnog teorema x(t) je vrlo blizak Gaussovom procesu čak i kada je s(t) ne-Gaussov. Maksimizacijom udaljenosti od Gaussove raspodjele nema smisla ako su izvorni signali Gaussovi.

P2) Izvorni signali moraju biti nezavisni identično i distribuirani (i.i.d.) procesi (vremenski bijeli):

$$E[s(t)s(t-l)] = \sigma \delta$$
$$p_s(t_1) = p_s(t_2)$$

Višekanalna slijepa dekonvolucija

iste pretpostavke se primjenjuju na višekanalnu slijepu dekonvoluciju (VSD=SRS+JSD): P1) svi izvorni signali moraju biti ne-Gaussovi. P2) svi izvorni signali moraju biti statistički nezavisni i.i.d. procesi:

$$E\left[s_{i}(t-p)s_{j}(t-q)\right] = \sigma\delta_{ij}\delta_{pq}$$

Opće rješenje problema slijepog razdvajanja signala je dano sa:

 $\mathbf{G}(z) = \mathbf{W}(z)\mathbf{A}(z) = \mathbf{P}\mathbf{A}\mathbf{D}(z)$

gdje je P opća permutacijska matrica, ${f \Lambda}$ je dijagonalna matrica, i

 $\mathbf{D}(z) = diag\left\{D_1(z)D_2(z)...D_N(z)\right\}$

$$D_n(z) = \sum_p d_{np} z^{-p}$$

U općem slučaju cilj SRS je da se izdvoje skalirane i filtrirane verzije nepoznatih izvornih signala.

VSD u vremenskom području Vremensko područje bez povratne veze. (+) Ne-kauzalna realizacija nužna za implementaciju inverza NMF kanala se lagano implementira čistom linijom za kašnjenje. (-) Izdvojeni signali su izbijeljene verzije izvornih signala. $y_1(k) = x_1(k) - \sum_{l=-L}^{L} w_{12}(l)x_2(k-l)$ $y_2(k) = x_2(k) - \sum_{l=-L}^{L} w_{21}(l)x_1(k-l)$

VSD u vremenskom području

Kontrastna funkcija za VSD se u većini slučajeva izvodi ili je u vezi sa formulacijom VSD problema preko metode maksimalne vjerojatnostl^{20,23}.

$$J_{MV}(\mathbf{W}) = \int_{\mathbf{x}} f_{\mathbf{x}}(\mathbf{x}) \log \hat{f}_{\mathbf{x}}(\mathbf{x}, \mathbf{W}) d\mathbf{x} = E \left\{ \log \hat{f}_{\mathbf{x}}(\mathbf{x}, \mathbf{W}) \right\}$$

pri čemu je

$$\hat{f}_{\mathbf{x}}(\mathbf{x}, \mathbf{W}) = \left[\hat{f}_{\mathbf{x}}(\mathbf{x}, \mathbf{W}) / f_{\mathbf{x}}(\mathbf{x}) \right] f_{\mathbf{x}}(\mathbf{x})$$

Kontrastna funkcija se može napisati kao

$$U_{MV}(\mathbf{W}) = -D\left(f_{\mathbf{x}} \| \hat{f}_{\mathbf{x}} \right) - H(f_{\mathbf{x}})$$

gdje D() predstavlja Kullback-Leibler udaljenost a H() je Shannonova ili diferencijalna entropija.

²³ D.L. Donoho, "On minimum entropy deconvolution," in D.F. Findley, ed., Applied Time Series Analysis II, Academic Press, pp.565-608, 1981.

VSD u vremenskom području

Pravilo učenja za **W** se dobije kao:

$$\Delta \mathbf{W} \propto \frac{\partial J_{MV}(\mathbf{W})}{\partial \mathbf{W}} = -\frac{\partial D(f_{\mathbf{x}} \| \hat{f}_{\mathbf{x}})}{\partial \mathbf{W}}$$

što znači da je maksimizacija vjerojatnosti ekvivalentna minimizaciji udaljenosti između točne ali nepoznate funkcije gustoće raspodjele vjerojatnosti i njenog modela za dani skup mjerenja.

Kada se pravila učenja za VSD izvedu maksimizacijom funkcije vjerojatnosti oni će ponovo sadržavati score funkcije:

$$\varphi_i(y_i) = -\frac{1}{f_{s_i}(y_i)} \frac{df_{s_i}(y_i)}{dy_i}$$

VSD u vremenskom području

Kako je već pokazano parametrizirani oblik score funkcija se izvodi iz poopćene Gaussove raspodjele:

$$p_i(y_i) = sign(y_i) |y_i|^{\theta_i^{-1}}$$

gdje jedan parametar θ_i (koji se zove Gaussov eksponent) može modelirati super-Gaussove raspodjele (θ_i <2) i sub-Gaussove raspodjele (θ_i >2).

Ako se VSD primjenjuje na probleme u komunikacijama θ_i =3 je dobar izbor i daje: $\varphi_i(y_i) = sign(y_i) |y_i|^2$

Ako se VSD primjenjuje na audio signale $\theta_i = 1$ je dobar izbor i daje:

 $\varphi_i(y_i) = sign(y_i)$

VSD u vremenskom području

On-line ICA algoritam metodom maksimalne vjerojatnosti za slijepo razdvajanje signala iz konvolucijskog minimalno faznog modela. Arhitektura s povratnom vezom. Obojeni signali, kao govor, mogu biti izdvojeni.

$$\Delta w_{ij}(t,l) \cong \frac{\partial J(\varphi(\mathbf{y}))}{\partial w_{ij}(l)} = \varphi_i(y_i) y_j(t-l)$$

 $w_{ij}(t+1,l) = w_{ij}(t,l) + \mu \Delta w_{ij}(t,l)$

$$y_i(t) = x_i(t) - \sum_{\substack{j \neq i \ j \neq i}}^N \sum_{l=1}^L w_{ij}(t,l) y_j(t-l)$$

gdje *i.j* označavaju indekse signala, *t* označava indeks iteracije, / označava indeks koeficijenta, a μ predstavlja konstantu učenja.

VSD u vremenskom području

Ako su izvorni signali bijeli (i.i.d.) **arhitektura bez povratne veze se može uporabiti u vremenskom području** za realizaciju ne-kauzalne implementacije potrebne za aproksimaciju inverza NMF kanala^{20,24}.

$$\mathbf{y}(t) = \sum_{p=0}^{L} \mathbf{W}_{p}(t) \mathbf{x}(t-p)$$

$$\mathbf{W}(t) = \sum_{p=0}^{L} \mathbf{W}_{L-p}^{H}(t) \mathbf{y}(t-p)$$

 $\mathbf{W}_{p}(t+1) = \mathbf{W}_{p}(t) + \eta(t) \left(\mathbf{W}_{p}(t) - \varphi(\mathbf{y}(t-L))\mathbf{u}^{H}(t-p) \right) \quad p = 0, ..., L$

gdje je g() funkcijski inverze od φ tako da važi:

$$\varphi_i(g_i(y_i)) = y_i$$

L je dužina filtra, t je indeks vremena,
$$\rho$$
 je indeks koeficijenta matričnog polinoma, a η mala konstanta učenja.

⁴S. Amari, S.C.Douglas, A. Cihocki and H.H. Yang, "Multichannel Blind Deconvolution and Equalization Using he Natural Gradient," IEEE International Workshop on Wireless Communication, Paris 1997, pp. 101-104.

Višekanalna slijepa dekonvolucija

Višekanalna slijepa separacija i dekonvolucija u vremenskom području (+) adaptivna formulacija je ostvariva.

- (-) spora konvergencija.
- (-) obojeni signali se izbjeljuju u strukturama bez povratne veze (feedforward architecture).
- (-) bijeljenje se može izbjeći u strukturama s povratnom vezom. No to onemogućava implementaciju nekauzalnih inverznih filtera nužnih za aproksimaciju stabilnog inverza NMF kanala.

Višekanalna slijepa separacija i dekonvolucija u frekvencijskom području (+) brža konvergencija zbog ortogonalnosti frekvencijskih uzoraka.

- (+) uvjet za nekauzalnu implementaciju je prirodno zadovoljen kroz blok implementaciju.
- (-) samo je blok-adaptivna implementacija moguća.
- (-) permutacija na razini frekvencijskih uzoraka uzrokuje poteškoće kada signali trebaju biti transformirani u vremensko područje.
- (-) računski zahtjevnija za implementaciju.

Rješenje VSD u frekvencijskom području

Matematička formulacija:

$$\begin{aligned} \mathbf{X} &= \mathrm{FFT}[\mathbf{x}] \\ \mathbf{V}_{k}(l+1) &= \mathbf{W}_{k}(l) + \begin{bmatrix} \mathbf{I} & - \mathbf{\Phi}(\mathbf{Y}_{k}) \mathbf{Y}_{k}^{H} \end{bmatrix} \mathbf{W}_{k}(\mathbf{Y}_{k} = \mathbf{W}_{k} \mathbf{X}_{k}) \end{aligned}$$

 $\mathbf{y} = \mathrm{IFFT}[\mathbf{Y}]$

gdje k označava indeks frekvencijskog uzorka a / označava indeks iteracije. Permutacijska neodređenost je ozbiljan problem ako se VSD implementira kompletno u frekvencijskom području.

$$\left(\mathbf{W}_{k_1}\mathbf{A}_{k_1} = \mathbf{P}_{k_1}\mathbf{\Lambda}_{k_1}\right) \neq \left(\mathbf{W}_{k_2}\mathbf{A}_{k_2} = \mathbf{P}_{k_2}\mathbf{\Lambda}_{k_2}\right)$$

Komponente na istim pozicijama u različitim frekvencijskim uzorcima ne pripadaju istom signalu. Nelinearna funkcija u frekvencijskom području može se koristiti kao u²⁵

$$\Phi_k(Y_k) = \tanh\left(\eta \left|Y_k\right|\right) e^{j \arg(Y_k)}$$

²⁵ H. Sawada, R. Mukai, S. Araki, S. Makino, "Polar Coordinate based Nonlinear Function for Frequency-Domain Blind Source Separation," IEICE Trans. Fundamentals, Vol. E86-A, No. 3, March 2003.

Rješenje VSD u frekvencijskom području

Kombinirana implementacija u vremenskom i frekvencijskom području. Kompromisno rješenje je izvesti filtriranje u frekvencijskom području a računanje nelinearnosti-test nezavisnosti (što uzrokuje permutacijsku neodređenost) u vremenskom području^{26,27}

 $\mathbf{Y}_{k}^{H} \mathbf{W}_{k}(l)$

$$\begin{split} \mathbf{X} &= \mathrm{FFT}[\mathbf{x}] \\ \Phi_i(\mathbf{Y}_i) &= \mathrm{FFT}[\varphi(\mathbf{y}_i)] \\ \mathbf{W}_k(l+1) &= \mathbf{W}_k(l) + \mu \begin{bmatrix} \mathbf{I} & - \mathbf{\Phi}(\mathbf{Y}_k) \end{bmatrix} \end{split}$$

$$\mathbf{Y}_k = \mathbf{W}_k \mathbf{X}_k$$

 $\mathbf{y}_i = \text{IFFT}(\mathbf{Y}_i)$

gdje k označava indeks frekvencijskog uzorka, / označava indeks iteracije, i označava indeks signala a μ predstavlja konstantu učenja. ²⁴ A. D. Back, A.C. Tsol, Proc. of the 1994 IEEE Workshop – Neural Networks for Signal Processing IV, p. 565. ed. J. Viontzos, J.N. Hwang, E. Wilson. ²⁷ I. Kopiva, H. Szu, A. Persin, Optics Comm., Vol. 203 (3-6) pp. 197-211, 2002.

Primjena rješenja dinamičkog problema

Razdvajanje govornih signala u reverbilnoj akustičkoj okolini. Snimljeni signali su *skinuti* s: http://home.socal.rr.com/russdsp. Signali su otipkani s 8kHz a sadrže istovremeni muški i ženski govor u trajanju od 12 sekundi.

Primjena rješenja dinamičkog problema

Parameteri procesa separacije su dužina filtra *L*, Gaussov exponent θ_{μ} te konstanta učenja μ . Pri frekvenciji otipkavanja od 8kHz i dužini filtra od *L*=1024 uzorka, može se aproksimirati relativno kašnjenje od 64ms. Pri brzini zvuka u zraku od 330 ms⁻¹ to korespondira s razlikom u putu od 21m. Slijedeći signali su rekonstruirani s *L*=1024 , θ_{l} =1.0 i μ =0.005.

